
CHAPTER 3:

LISTS, STACKS, AND QUEUES

This chapter discusses three of the most simple and basic data structures.

Virtually every significant program will use at least one of these structures

explicitly, and a stack is always implicitly used in your program, whether or not

you declare one. Among the highlights of this chapter, we will

 Introduce the concept of Abstract Data Types (ADTs).

 Show how to efficiently perform operations on lists.

 Introduce the stack ADT and its use in implementing recursion.

 Introduce the queue ADT and its use in operating systems and algorithm
design.

Because these data structures are so important, one might expect that they are

hard to implement. In fact, they are extremely easy to code up; the main

difficulty is keeping enough discipline to write good general-purpose code for

routines that are generally only a few lines long.

3.1. Abstract Data Types (ADTs)

One of the basic rules concerning programming is that no routine should ever

exceed a page. This is accomplished by breaking the program down into modules.

Each module is a logical unit and does a specific job. Its size is kept small by

calling other modules. Modularity has several advantages. First, it is much

easier to debug small routines than large routines. Second, it is easier for

several people to work on a modular program simultaneously. Third, a well-written

modular program places certain dependencies in only one routine, making changes

easier. For instance, if output needs to be written in a certain format, it is

certainly important to have one routine to do this. If printing statements are

scattered throughout the program, it will take considerably longer to make

modifications. The idea that global variables and side effects are bad is

directly attributable to the idea that modularity is good.

An abstract data type (ADT) is a set of operations. Abstract data types are
mathematical abstractions; nowhere in an ADT's definition is there any mention
of how the set of operations is implemented. This can be viewed as an extension

of modular design.

Objects such as lists, sets, and graphs, along with their operations, can be

viewed as abstract data types, just as integers, reals, and booleans are data

types. Integers, reals, and booleans have operations associated with them, and so

do abstract data types. For the set ADT, we might have such operations as union,

Next ChapterReturn to Table of ContentsPrevious Chapter

页码，1/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

intersection, size, and complement. Alternately, we might only want the two

operations union and find, which would define a different ADT on the set.

The basic idea is that the implementation of these operations is written once in

the program, and any other part of the program that needs to perform an operation

on the ADT can do so by calling the appropriate function. If for some reason
implementation details need to change, it should be easy to do so by merely

changing the routines that perform the ADT operations. This change, in a perfect

world, would be completely transparent to the rest of the program.

There is no rule telling us which operations must be supported for each ADT;
this is a design decision. Error handling and tie breaking (where appropriate)

are also generally up to the program designer. The three data structures that we

will study in this chapter are primary examples of ADTs. We will see how each
can be implemented in several ways, but if they are done correctly, the programs

that use them will not need to know which implementation was used.

3.2. The List ADT

We will deal with a general list of the form a

1

, a

2

, a

3

, . . . , a

n

. We say that

the size of this list is n. We will call the special list of size 0 a null list.

For any list except the null list, we say that a

i+l

 follows (or succeeds) a

i

(i <

n) and that a

i-1

 precedes a

i

 (i > 1). The first element of the list is a

1

, and

the last element is a

n

. We will not define the predecessor of a

1

 or the successor

of a

n

. The position of element a

i

 in a list is i. Throughout this discussion, we

will assume, to simplify matters, that the elements in the list are integers, but

in general, arbitrarily complex elements are allowed.

Associated with these "definitions" is a set of operations that we would like to

perform on the list ADT. Some popular operations are print_list and make_null,
which do the obvious things; find, which returns the position of the first

occurrence of a key; insert and delete, which generally insert and delete some

key from some position in the list; and find_kth, which returns the element in

some position (specified as an argument). If the list is 34, 12, 52, 16, 12, then

find(52) might return 3; insert(x,3) might make the list into 34, 12, 52, x, 16,

12 (if we insert after the position given); and delete(3) might turn that list

into 34, 12, x, 16, 12.

Of course, the interpretation of what is appropriate for a function is entirely

up to the programmer, as is the handling of special cases (for example, what does

find(1) return above?). We could also add operations such as next and previous,

which would take a position as argument and return the position of the successor

and predecessor, respectively.

3.2.1. Simple Array Implementation of Lists

Obviously all of these instructions can be implemented just by using an array.

Even if the array is dynamically allocated, an estimate of the maximum size of

the list is required. Usually this requires a high over-estimate, which wastes

页码，2/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

considerable space. This could be a serious limitation, especially if there are

many lists of unknown size.

An array implementation allows print_list and find to be carried out in linear

time, which is as good as can be expected, and the find_kth operation takes

constant time. However, insertion and deletion are expensive. For example,

inserting at position 0 (which amounts to making a new first element) requires

first pushing the entire array down one spot to make room, whereas deleting the

first element requires shifting all the elements in the list up one, so the worst

case of these operations is O(n). On average, half the list needs to be moved for

either operation, so linear time is still required. Merely building a list by n

successive inserts would require quadratic time.

Because the running time for insertions and deletions is so slow and the list

size must be known in advance, simple arrays are generally not used to implement

lists.

3.2.2. Linked Lists

In order to avoid the linear cost of insertion and deletion, we need to ensure

that the list is not stored contiguously, since otherwise entire parts of the

list will need to be moved. Figure 3.1 shows the general idea of a linked list.

The linked list consists of a series of structures, which are not necessarily

adjacent in memory. Each structure contains the element and a pointer to a

structure containing its successor. We call this the next pointer. The last

cell's next pointer points to ; this value is defined by C and cannot be confused

with another pointer. ANSI C specifies that is zero.

Recall that a pointer variable is just a variable that contains the address where

some other data is stored. Thus, if p is declared to be a pointer to a structure,

then the value stored in p is interpreted as the location, in main memory, where

a structure can be found. A field of that structure can be accessed by p

field_name, where field_name is the name of the field we wish to examine.

Figure 3.2 shows the actual representation of the list in Figure 3.1. The list

contains five structures, which happen to reside in memory locations 1000, 800,

712, 992, and 692 respectively. The next pointer in the first structure has the

value 800, which provides the indication of where the second structure is. The

other structures each have a pointer that serves a similar purpose. Of course, in

order to access this list, we need to know where the first cell can be found. A

pointer variable can be used for this purpose. It is important to remember that a

pointer is just a number. For the rest of this chapter, we will draw pointers

with arrows, because they are more illustrative.

Figure 3.1 A linked list

页码，3/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 3.2 Linked list with actual pointer values

Figure 3.3 Deletion from a linked list

Figure 3.4 Insertion into a linked list

To execute print_list(L) or find(L,key), we merely pass a pointer to the first

element in the list and then traverse the list by following the next pointers.

This operation is clearly linear-time, although the constant is likely to be

larger than if an array implementation were used. The find_kth operation is no

longer quite as efficient as an array implementation; find_kth(L,i) takes O(i)

time and works by traversing down the list in the obvious manner. In practice,

this bound is pessimistic, because frequently the calls to find_kth are in sorted

order (by i). As an example, find_kth(L,2), find_kth(L,3), find_kth(L,4),

find_kth(L,6) can all be executed in one scan down the list.

The delete command can be executed in one pointer change. Figure 3.3 shows the

result of deleting the third element in the original list.

The insert command requires obtaining a new cell from the system by using an

malloc call (more on this later) and then executing two pointer maneuvers. The

general idea is shown in Figure 3.4. The dashed line represents the old pointer.

3.2.3. Programming Details

The description above is actually enough to get everything working, but there are

several places where you are likely to go wrong. First of all, there is no really

obvious way to insert at the front of the list from the definitions given.

Second, deleting from the front of the list is a special case, because it changes

the start of the list; careless coding will lose the list. A third problem

concerns deletion in general. Although the pointer moves above are simple, the

deletion algorithm requires us to keep track of the cell before the one that we

want to delete.

页码，4/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 3.5 Linked list with a header

It turns out that one simple change solves all three problems. We will keep a

sentinel node, which is sometimes referred to as a header or dummy node. This is

a common practice, which we will see several times in the future. Our convention

will be that the header is in position 0. Figure 3.5 shows a linked list with a

header representing the list a

1

, a

2

, . . . , a

5

.

To avoid the problems associated with deletions, we need to write a routine

find_previous, which will return the position of the predecessor of the cell we

wish to delete. If we use a header, then if we wish to delete the first element

in the list, find_previous will return the position of the header. The use of a

header node is somewhat controversial. Some people argue that avoiding special

cases is not sufficient justification for adding fictitious cells; they view the

use of header nodes as little more than old-style hacking. Even so, we will use

them here, precisely because they allow us to show the basic pointer

manipulations without obscuring the code with special cases. Otherwise, whether

or not a header should be used is a matter of personal preference.

As examples, we will write about half of the list ADT routines. First, we need
our declarations, which are given in Figure 3.6.

The first function that we will write tests for an empty list. When we write code

for any data structure that involves pointers, it is always best to draw a

picture first. Figure 3.7 shows an empty list; from the figure it is easy to

write the function in Figure 3.8.

The next function, which is shown in Figure 3.9, tests whether the current

element, which by assumption exists, is the last of the list.

typedef struct node *node_ptr;

struct node

{

element_type element;

node_ptr next;

};

typedef node_ptr LIST;

typedef node_ptr position;

Figure 3.6 Type declarations for linked lists

页码，5/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 3.7 Empty list with header

int

is_empty(LIST L)

{

return(L->next == NULL);

}

Figure 3.8 Function to test whether a linked list is empty

int

is_last(position p, LIST L)

{

return(p->next == NULL);

}

Figure 3.9 Function to test whether current position is the last in a linked list

The next routine we will write is find. Find, shown in Figure 3.10, returns the

position in the list of some element. Line 2 takes advantage of the fact that the

and (&&) operation is short-circuited: if the first half of the and is false, the

result is automatically false and the second half is not executed.

/* Return position of x in L; NULL if not found */

position

find (element_type x, LIST L)

{

position p;

/*1*/ p = L->next;

/*2*/ while((p != NULL) && (p->element != x))

/*3*/ p = p->next;

/*4*/ return p;

页码，6/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

}

Figure 3.10 Find routine

Some programmers find it tempting to code the find routine recursively, possibly

because it avoids the sloppy termination condition. We shall see later that this

is a very bad idea and should be avoided at all costs.

Our fourth routine will delete some element x in list L. We need to decide what

to do if x occurs more than once or not at all. Our routine deletes the first

occurrence of x and does nothing if x is not in the list. To do this, we find p,

which is the cell prior to the one containing x, via a call to find_previous. The

code to implement this is shown in Figure 3.11. The find_previous routine is

similar to find and is shown in Figure 3.12.

The last routine we will write is an insertion routine. We will pass an element

to be inserted along with the list L and a position p. Our particular insertion

routine will insert an element after the position implied by p. This decision is

arbitrary and meant to show that there are no set rules for what insertion does.

It is quite possible to insert the new element into position p (which means

before the element currently in position p), but doing this requires knowledge of

the element before position p. This could be obtained by a call to find_previous.

It is thus important to comment what you are doing. This has been done in Figure

3.13.

Notice that we have passed the list to the insert and is_last routines, even

though it was never used. We did this because another implementation might need

this information, and so not passing the list would defeat the idea of using

ADTs.*

* This is legal, but some compilers will issue a warning.

/* Delete from a list. Cell pointed */

/* to by p->next is wiped out. */

/* Assume that the position is legal. */

/* Assume use of a header node. */

void

delete(element_type x, LIST L)

{

position p, tmp_cell;

p = find_previous(x, L);

if(p->next != NULL) /* Implicit assumption of header use */

{ /* x is found: delete it */

页码，7/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

tmp_cell = p->next;

p->next = tmp_cell->next; /* bypass the cell to be deleted */

free(tmp_cell);

}

}

Figure 3.11 Deletion routine for linked lists

/* Uses a header. If element is not found, then next field */

/* of returned value is NULL */

position

find_previous(element_type x, LIST L)

{

position p;

/*1*/ p = L;

/*2*/ while((p->next != NULL) && (p->next->element != x))

/*3*/ p = p->next;

/*4*/ return p;

}

Figure 3.12 Find_previous--the find routine for use with delete

/* Insert (after legal position p).*/

/* Header implementation assumed. */

void

insert(element_type x, LIST L, position p)

{

position tmp_cell;

/*1*/ tmp_cell = (position) malloc(sizeof (struct node));

/*2*/ if(tmp_cell == NULL)

/*3*/ fatal_error("Out of space!!!");

else

页码，8/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

/*4*/ tmp_cell->element = x;

/*5*/ tmp_cell->next = p->next;

/*6*/ p->next = tmp_cell;

}

}

Figure 3.13 Insertion routine for linked lists

With the exception of the find and find_previous routines, all of the operations

we have coded take O(1) time. This is because in all cases only a fixed number of

instructions are performed, no matter how large the list is. For the find and

find_previous routines, the running time is O(n) in the worst case, because the

entire list might need to be traversed if the element is either not found or is

last in the list. On average, the running time is O(n), because on average, half

the list must be traversed.

We could write additional routines to print a list and to perform the next

function. These are fairly straightforward. We could also write a routine to

implement previous. We leave these as exercises.

3.2.4. Common Errors

The most common error that you will get is that your program will crash with a

nasty error message from the system, such as "memory access violation" or

"segmentation violation." This message usually means that a pointer variable

contained a bogus address. One common reason is failure to initialize the

variable. For instance, if line 1 in Figure 3.14 is omitted, then p is undefined

and is not likely to be pointing at a valid part of memory. Another typical error

would be line 6 in Figure 3.13. If p is , then the indirection is illegal. This

function knows that p is not , so the routine is OK. Of course, you should

comment this so that the routine that calls insert will insure this. Whenever you

do an indirection, you must make sure that the pointer is not NULL. Some C

compliers will implicity do this check for you, but this is not part of the C

standard. When you port a program from one compiler to another, you may find that

it no longer works. This is one of the common reasons why.

The second common mistake concerns when and when not to use malloc to get a new

cell. You must remember that declaring a pointer to a structure does not create

the structure but only gives enough space to hold the address where some

structure might be. The only way to create a record that is not already declared

is to use the malloc command. The command malloc(size_p) has the system create,

magically, a new structure and return a pointer to it. If, on the other hand, you

want to use a pointer variable to run down a list, there is no need to declare a

new structure; in that case the malloc command is inappropriate. A type cast is

used to make both sides of the assignment operator compatible. The C library

provides other variations of malloc such as calloc.

页码，9/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

void

delete_list(LIST L)

{

position p;

/*1*/ p = L->next; /* header assumed */

/*2*/ L->next = NULL;

/*3*/ while(p != NULL)

{

/*4*/ free(p);

/*5*/ p = p->next;

}

}

Figure 3.14 Incorrect way to delete a list

When things are no longer needed, you can issue a free command to inform the

system that it may reclaim the space. A consequence of the free(p) command is

that the address that p is pointing to is unchanged, but the data that resides at

that address is now undefined.

If you never delete from a linked list, the number of calls to malloc should

equal the size of the list, plus 1 if a header is used. Any less, and you cannot

possibly have a working program. Any more, and you are wasting space and probably

time. Occasionally, if your program uses a lot of space, the system may be unable

to satisfy your request for a new cell. In this case a pointer is returned.

After a deletion in a linked list, it is usually a good idea to free the cell,

especially if there are lots of insertions and deletions intermingled and memory

might become a problem. You need to keep a temporary variable set to the cell to

be disposed of, because after the pointer moves are finished, you will not have a

reference to it. As an example, the code in Figure 3.14 is not the correct way to

delete an entire list (although it may work on some systems).

Figure 3.15 shows the correct way to do this. Disposal is not necessarily a fast

thing, so you might want to check to see if the disposal routine is causing any

slow performance and comment it out if this is the case. This author has written

a program (see the exercises) that was made 25 times faster by commenting out the

disposal (of 10,000 nodes). It turned out that the cells were freed in a rather

peculiar order and apparently caused an otherwise linear program to spend O(n log

n) time to dispose of n cells.

One last warning: malloc(sizeof node_ptr) is legal, but it doesn't allocate

enough space for a structure. It allocates space only for a pointer.

页码，10/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

void

delete_list(LIST L)

{

position p, tmp;

/*1*/ p = L->next; /
*

 header assumed
*

/

/*2*/ L->next = NULL;

/*3*/ while(p != NULL)

{

/*4*/ tmp = p->next;

/*5*/ free(p);

/*6*/ p = tmp;

}

}

Figure 3.15 Correct way to delete a list

Figure 3.16 A doubly linked list

3.2.5. Doubly Linked Lists

Sometimes it is convenient to traverse lists backwards. The standard

implementation does not help here, but the solution is simple. Merely add an

extra field to the data structure, containing a pointer to the previous cell. The

cost of this is an extra link, which adds to the space requirement and also

doubles the cost of insertions and deletions because there are more pointers to

fix. On the other hand, it simplifies deletion, because you no longer have to

refer to a key by using a pointer to the previous cell; this information is now

at hand. Figure 3.16 shows a doubly linked list.

3.2.6. Circularly Linked Lists

A popular convention is to have the last cell keep a pointer back to the first.

This can be done with or without a header (if the header is present, the last

cell points to it), and can also be done with doubly linked lists (the first

cell's previous pointer points to the last cell). This clearly affects some of

the tests, but the structure is popular in some applications. Figure 3.17 shows a

double circularly linked list with no header.

页码，11/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

3.2.7. Examples

We provide three examples that use linked lists. The first is a simple way to

represent single-variable polynomials. The second is a method to sort in linear

time, for some special cases. Finally, we show a complicated example of how

linked lists might be used to keep track of course registration at a university.

The Polynomial ADT

We can define an abstract data type for single-variable polynomials (with

nonnegative exponents) by using a list. Let . If most of the

coefficients a

i

 are nonzero, we can use a simple array to store the coefficients.

We could then write routines to perform addition, subtraction, multiplication,

differentiation, and other operations on these polynomials. In this case, we

might use the type declarations given in Figure 3.18. We could then write

routines to perform various operations. Two possibilities are addition and

multiplication. These are shown in Figures 3.19 to 3.21. Ignoring the time to

initialize the output polynomials to zero, the running time of the multiplication

routine is proportional to the product of the degree of the two input

polynomials. This is adequate for dense polynomials, where most of the terms are

present, but if p

1

(x) = 10x

1000

 + 5x

14

 + 1 and p

2

(x) = 3x

1990

 - 2x

1492

 + 11x + 5,

then the running time is likely to be unacceptable. One can see that most of the

time is spent multiplying zeros and stepping through what amounts to nonexistent

parts of the input polynomials. This is always undesirable.

Figure 3.17 A double circularly linked list

typedef struct

{

int coeff_array[MAX_DEGREE+1];

unsigned int high_power;

} *POLYNOMIAL;

Figure 3.18 Type declarations for array implementation of the polynomial ADT

An alternative is to use a singly linked list. Each term in the polynomial is

contained in one cell, and the cells are sorted in decreasing order of exponents.

For instance, the linked lists in Figure 3.22 represent p

1

(x) and p

2

(x). We could

then use the declarations in Figure 3.23.

void

页码，12/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

zero_polynomial(POLYNOMIAL poly)

{

unsigned int i;

for(i=0; i<=MAX_DEGREE; i++)

poly->coeff_array[i] = 0;

poly->high_power = 0;

}

Figure 3.19 Procedure to initialize a polynomial to zero

void

add_polynomial(POLYNOMIAL poly1, POLYNOMIAL poly2,

POLYNOMIAL poly_sum)

{

int i;

zero_polynomial(poly_sum);

poly_sum->high_power = max(poly1->high_power,

poly2->high_power);

for(i=poly_sum->high_power; i>=0; i--)

poly_sum->coeff_array[i] = poly1->coeff_array[i]

+ poly2->coeff_array[i];

}

Figure 3.20 Procedure to add two polynomials

void

mult_polynomial(POLYNOMIAL poly1, POLYNOMIAL poly2,

POLYNOMIAL poly_prod)

{

unsigned int i, j;

zero_polynomial(poly_prod);

poly_prod->high_power = poly1->high_power

页码，13/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

+ poly2->high_power;

if(poly_prod->high_power > MAX_DEGREE)

error("Exceeded array size");

else

for(i=0; i<=poly->high_power; i++)

for(j=0; j<=poly2->high_power; j++)

poly_prod->coeff_array[i+j] +=

poly1->coeff_array[i] * poly2->coeff_array[j];

}

Figure 3.21 Procedure to multiply two polynomials

Figure 3.22 Linked list representations of two polynomials

typedef struct node
*

node_ptr;

struct node

{

int coefficient;

int exponent;

node_ptr next;

} ;

typedef node_ptr POLYNOMIAL; /
*

 keep nodes sorted by exponent */

Figure 3.23 Type declaration for linked list implementation of the Polynomial

ADT

The operations would then be straightforward to implement. The only potential

difficulty is that when two polynomials are multiplied, the resultant polynomial

will have to have like terms combined. There are several ways to do this, but we

will leave this as an exercise.

页码，14/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Radix Sort

A second example where linked lists are used is called radix sort. Radix sort is

sometimes known as card sort, because it was used, until the advent of modern

computers, to sort old-style punch cards.

If we have n integers in the range 1 to m (or 0 to m - 1) 9, we can use this

information to obtain a fast sort known as bucket sort. We keep an array called

count, of size m, which is initialized to zero. Thus, count has m cells (or

buckets), which are initially empty. When a

i

 is read, increment (by one) count

[a

i

]. After all the input is read, scan the count array, printing out a

representation of the sorted list. This algorithm takes O(m + n); the proof is

left as an exercise. If m = (n), then bucket sort is O(n).

Radix sort is a generalization of this. The easiest way to see what happens is by

example. Suppose we have 10 numbers, in the range 0 to 999, that we would like to

sort. In general, this is n numbers in the range 0 to n

p

 - 1 for some constant p.

Obviously, we cannot use bucket sort; there would be too many buckets. The trick

is to use several passes of bucket sort. The natural algorithm would be to

bucket-sort by the most significant "digit" (digit is taken to base n), then next

most significant, and so on. That algorithm does not work, but if we perform

bucket sorts by least significant "digit" first, then the algorithm works. Of

course, more than one number could fall into the same bucket, and, unlike the

original bucket sort, these numbers could be different, so we keep them in a

list. Notice that all the numbers could have some digit in common, so if a simple

array were used for the lists, then each array would have to be of size n, for a

total space requirement of (n

2

).

The following example shows the action of radix sort on 10 numbers. The input is

64, 8, 216, 512, 27, 729, 0, 1, 343, 125 (the first ten cubes arranged randomly).

The first step bucket sorts by the least significant digit. In this case the math

is in base 10 (to make things simple), but do not assume this in general. The

buckets are as shown in Figure 3.24, so the list, sorted by least significant

digit, is 0, 1, 512, 343, 64, 125, 216, 27, 8, 729. These are now sorted by the

next least significant digit (the tens digit here) (see Fig. 3.25). Pass 2 gives

output 0, 1, 8, 512, 216, 125, 27, 729, 343, 64. This list is now sorted with

respect to the two least significant digits. The final pass, shown in Figure

3.26, bucket-sorts by most significant digit. The final list is 0, 1, 8, 27, 64,

125, 216, 343, 512, 729.

To see that the algorithm works, notice that the only possible failure would

occur if two numbers came out of the same bucket in the wrong order. But the

previous passes ensure that when several numbers enter a bucket, they enter in

sorted order. The running time is O(p(n + b)) where p is the number of passes, n

is the number of elements to sort, and b is the number of buckets. In our case, b

= n.

 0 1 512 343 64 125 216 27 8 729

页码，15/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 0 1 2 3 4 5 6 7 8 9

Figure 3.24 Buckets after first step of radix sort

 8 729

 1 216 27

 0 512 125 343 64

 0 1 2 3 4 5 6 7 8 9

Figure 3.25 Buckets after the second pass of radix sort

 64

 27

 8

 1

 0 125 216 343 512 729

--

 0 1 2 3 4 5 6 7 8 9

Figure 3.26 Buckets after the last pass of radix sort

As an example, we could sort all integers that are representable on a computer

(32 bits) by radix sort, if we did three passes over a bucket size of 2

11

. This

algorithm would always be O(n) on this computer, but probably still not as

efficient as some of the algorithms we shall see in Chapter 7, because of the

high constant involved (remember that a factor of log n is not all that high, and

this algorithm would have the overhead of maintaining linked lists).

Multilists

Our last example shows a more complicated use of linked lists. A university with

40,000 students and 2,500 courses needs to be able to generate two types of

reports. The first report lists the class registration for each class, and the

second report lists, by student, the classes that each student is registered for.

The obvious implementation might be to use a two-dimensional array. Such an array

would have 100 million entries. The average student registers for about three

courses, so only 120,000 of these entries, or roughly 0.1 percent, would actually

have meaningful data.

What is needed is a list for each class, which contains the students in the

class. We also need a list for each student, which contains the classes the

student is registered for. Figure 3.27 shows our implementation.

页码，16/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

As the figure shows, we have combined two lists into one. All lists use a header

and are circular. To list all of the students in class C3, we start at C3 and

traverse its list (by going right). The first cell belongs to student S1.

Although there is no explicit information to this effect, this can be determined

by following the student's linked list until the header is reached. Once this is

done, we return to C3's list (we stored the position we were at in the course

list before we traversed the student's list) and find another cell, which can be

determined to belong to S3. We can continue and find that S4 and S5 are also in

this class. In a similar manner, we can determine, for any student, all of the

classes in which the student is registered.

Figure 3.27 Multilist implementation for registration problem

Using a circular list saves space but does so at the expense of time. In the

worst case, if the first student was registered for every course, then every

entry would need to be examined in order to determine all the course names for

that student. Because in this application there are relatively few courses per

student and few students per course, this is not likely to happen. If it were

suspected that this could cause a problem, then each of the (nonheader) cells

could have pointers directly back to the student and class header. This would

double the space requirement, but simplify and speed up the implementation.

3.2.8. Cursor Implementation of Linked Lists

Many languages, such as BASIC and FORTRAN, do not support pointers. If linked
lists are required and pointers are not available, then an alternate

implementation must be used. The alternate method we will describe is known as a

cursor implementation.

The two important items present in a pointer implementation of linked lists are

页码，17/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

1. The data is stored in a collection of structures. Each structure contains the

data and a pointer to the next structure.

2. A new structure can be obtained from the system's global memory by a call to

malloc and released by a call to free.

Our cursor implementation must be able to simulate this. The logical way to

satisfy condition 1 is to have a global array of structures. For any cell in the

array, its array index can be used in place of an address. Figure 3.28 gives the

type declarations for a cursor implementation of linked lists.

We must now simulate condition 2 by allowing the equivalent of malloc and free

for cells in the CURSOR_SPACE array. To do this, we will keep a list (the

freelist) of cells that are not in any list. The list will use cell 0 as a

header. The initial configuration is shown in Figure 3.29.

A value of 0 for next is the equivalent of a pointer. The initialization of

CURSOR_SPACE is a straightforward loop, which we leave as an exercise. To perform

an malloc, the first element (after the header) is removed from the freelist.

typedef unsigned int node_ptr;

struct node

{

element_type element;

node_ptr next;

};

typedef node_ptr LIST;

typedef node_ptr position;

struct node CURSOR_SPACE[SPACE_SIZE];

Figure 3.28 Declarations for cursor implementation of linked lists

 Slot Element Next

 0 1

 1 2

 2 3

 3 4

 4 5

 5 6

页码，18/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 6 7

 7 8

 8 9

 9 10

 10 0

Figure 3.29 An initialized CURSOR_SPACE

To perform a free, we place the cell at the front of the freelist. Figure 3.30

shows the cursor implementation of malloc and free. Notice that if there is no

space available, our routine does the correct thing by setting p = 0. This

indicates that there are no more cells left, and also makes the second line of

cursor_new a nonoperation (no-op).

Given this, the cursor implementation of linked lists is straightforward. For

consistency, we will implement our lists with a header node. As an example, in

Figure 3.31, if the value of L is 5 and the value of M is 3, then L represents

the list a, b, e, and M represents the list c, d, f.

position

cursor_alloc(void)

{

position p;

p = CURSOR_SPACE[O].next;

CURSOR_SPACE[0].next = CURSOR_SPACE[p].next;

return p;

}

void

cursor_free(position p)

{

CURSOR_SPACE[p].next = CURSOR_SPACE[O].next;

CURSOR_SPACE[O].next = p;

}

Figure 3.30 Routines: cursor-alloc and cursor-free

 Slot Element Next

页码，19/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

 0 - 6

 1 b 9

 2 f 0

 3 header 7

 4 - 0

 5 header 10

 6 - 4

 7 c 8

 8 d 2

 9 e 0

 10 a 1

Figure 3.31 Example of a cursor implementation of linked lists

To write the functions for a cursor implementation of linked lists, we must pass

and return the identical parameters as the pointer implementation. The routines

are straightforward. Figure 3.32 implements a function to test whether a list is

empty. Figure 3.33 implements the test of whether the current position is the

last in a linked list.

The function find in Figure 3.34 returns the position of x in list L.

The code to implement deletion is shown in Figure 3.35. Again, the interface for

the cursor implementation is identical to the pointer implementation. Finally,

Figure 3.36 shows a cursor implementation of insert.

The rest of the routines are similarly coded. The crucial point is that these

routines follow the ADT specification. They take specific arguments and perform
specific operations. The implementation is transparent to the user. The cursor

implementation could be used instead of the linked list implementation, with

virtually no change required in the rest of the code.

int

is_empty(LIST L) /* using a header node */

{

return(CURSOR_SPACE[L].next == 0

}

Figure 3.32 Function to test whether a linked list is empty--cursor

implementation

页码，20/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

int

is_last(position p, LIST L) /* using a header node */

{

return(CURSOR_SPACE[p].next == 0

}

Figure 3.33 Function to test whether p is last in a linked list--cursor

implementation

position

find(element_type x, LIST L) /* using a header node */

{

position p;

/*1*/ p = CURSOR_SPACE[L].next;

/*2*/ while(p && CURSOR_SPACE[p].element != x)

/*3*/ p = CURSOR_SPACE[p].next;

/*4*/ return p;

}

Figure 3.34 Find routine--cursor implementation

void

delete(element_type x, LIST L)

{

position p, tmp_cell;

p = find_previous(x, L);

if(!is_last(p, L))

{

tmp_cell = CURSOR_SPACE[p].next;

CURSOR_SPACE[p].next = CURSOR_SPACE[tmp_cell].next;

cursor_free(tmp_cell);

}

}

页码，21/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 3.35 Deletion routine for linked lists--cursor implementation

/* Insert (after legal position p); */

/* header implementation assumed */

void

insert(element_type x, LIST L, position p)

{

position tmp_cell;

/*1*/ tmp_cell = cursor_alloc()

/*2*/ if(tmp_cell ==0)

/*3*/ fatal_error("Out of space!!!");

else

{

/*4*/ CURSOR_SPACE[tmp_cell].element = x;

/*5*/ CURSOR_SPACE[tmp_cell].next = CURSOR_SPACE[p].next;

/*6*/ CURSOR_SPACE[p].next = tmp_cell;

}

}

Figure 3.36 Insertion routine for linked lists--cursor implementation

The freelist represents an interesting data structure in its own right. The cell

that is removed from the freelist is the one that was most recently placed there

by virtue of free. Thus, the last cell placed on the freelist is the first cell

taken off. The data structure that also has this property is known as a stack,

and is the topic of the next section.

3.3. The Stack ADT

3.3.1. Stack Model

A stack is a list with the restriction that inserts and deletes can be performed

in only one position, namely the end of the list called the top. The fundamental

operations on a stack are push, which is equivalent to an insert, and pop, which

deletes the most recently inserted element. The most recently inserted element

can be examined prior to performing a pop by use of the top routine. A pop or top

on an empty stack is generally considered an error in the stack ADT. On the
other hand, running out of space when performing a push is an implementation

页码，22/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

error but not an ADT error.

Stacks are sometimes known as LIFO (last in, first out) lists. The model
depicted in Figure 3.37 signifies only that pushes are input operations and pops

and tops are output. The usual operations to make empty stacks and test for

emptiness are part of the repertoire, but essentially all that you can do to a

stack is push and pop.

Figure 3.38 shows an abstract stack after several operations. The general model

is that there is some element that is at the top of the stack, and it is the only

element that is visible.

Figure 3.37 Stack model: input to a stack is by push, output is by pop

Figure 3.38 Stack model: only the top element is accessible

3.3.2. Implementation of Stacks

Of course, since a stack is a list, any list implementation will do. We will give

two popular implementations. One uses pointers and the other uses an array, but,

as we saw in the previous section, if we use good programming principles the

calling routines do not need to know which method is being used.

Linked List Implementation of Stacks

The first implementation of a stack uses a singly linked list. We perform a push

by inserting at the front of the list. We perform a pop by deleting the element

at the front of the list. A top operation merely examines the element at the

front of the list, returning its value. Sometimes the pop and top operations are

combined into one. We could use calls to the linked list routines of the previous

页码，23/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

section, but we will rewrite the stack routines from scratch for the sake of

clarity.

First, we give the definitions in Figure 3.39. We implement the stack using a

header. Then Figure 3.40 shows that an empty stack is tested for in the same

manner as an empty list.

Creating an empty stack is also simple. We merely create a header node; make_null

sets the next pointer to NULL (see Fig. 3.41). The push is implemented as an

insertion into the front of a linked list, where the front of the list serves as

the top of the stack (see Fig. 3.42). The top is performed by examining the

element in the first position of the list (see Fig. 3.43). Finally, we implement

pop as a delete from the front of the list (see Fig. 3.44).

It should be clear that all the operations take constant time, because nowhere in

any of the routines is there even a reference to the size of the stack (except

for emptiness), much less a loop that depends on this size. The drawback of this

implementation is that the calls to malloc and free are expensive, especially in

comparison to the pointer manipulation routines. Some of this can be avoided by

using a second stack, which is initially empty. When a cell is to be disposed

from the first stack, it is merely placed on the second stack. Then, when new

cells are needed for the first stack, the second stack is checked first.

Array Implementation of Stacks

An alternative implementation avoids pointers and is probably the more popular

solution. The only potential hazard with this strategy is that we need to declare

an array size ahead of time. Generally this is not a problem, because in typical

applications, even if there are quite a few stack operations, the actual number

of elements in the stack at any time never gets too large. It is usually easy to

declare the array to be large enough without wasting too much space. If this is

not possible, then a safe course would be to use a linked list implementation.

If we use an array implementation, the implementation is trivial. Associated with

each stack is the top of stack, tos, which is -1 for an empty stack (this is how

an empty stack is initialized). To push some element x onto the stack, we

increment tos and then set STACK[tos] = x, where STACK is the array representing

the actual stack. To pop, we set the return value to STACK[tos] and then

decrement tos. Of course, since there are potentially several stacks, the STACK

array and tos are part of one structure representing a stack. It is almost always

a bad idea to use global variables and fixed names to represent this (or any)

data structure, because in most real-life situations there will be more than one

stack. When writing your actual code, you should attempt to follow the model as

closely as possible, so that no part of your code, except for the stack routines,

can attempt to access the array or top-of-stack variable implied by each stack.

This is true for all ADT operations. Modern languages such as Ada and C++ can
actually enforce this rule.

typedef struct node
*

node_ptr;

struct node

{

页码，24/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

element_type element;

node_ptr next;

};

typedef node_ptr STACK;

/
*

 Stack implementation will use a header.
*

/

Figure 3.39 Type declaration for linked list implementation of the stack ADT

int

is_empty(STACK S)

{

return(S->next == NULL);

}

Figure 3.40 Routine to test whether a stack is empty-linked list implementation

STACK

create_stack(void)

{

STACK S;

S = (STACK) malloc(sizeof(struct node));

if(S == NULL)

fatal_error("Out of space!!!");

return S;

}

void

make_null(STACK S)

{

if(S != NULL)

S->next = NULL;

else

error("Must use create_stack first");

页码，25/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

}

Figure 3.41 Routine to create an empty stack-linked list implementation

void

push(element_type x, STACK S)

{

node_ptr tmp_cell;

tmp_cell = (node_ptr) malloc(sizeof (struct node));

if(tmp_cell == NULL)

fatal_error("Out of space!!!");

else

{

tmp_cell->element = x;

tmp_cell->next = S->next;

S->next = tmp_cell;

}

}

Figure 3.42 Routine to push onto a stack-linked list implementation

element_type

top(STACK S)

{

if(is_empty(S))

error("Empty stack");

else

return S->next->element;

}

Figure 3.43 Routine to return top element in a stack--linked list implementation

void

pop(STACK S)

页码，26/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

node_ptr first_cell;

if(is_empty(S))

error("Empty stack");

else

{

first_cell = S->next;

S->next = S->next->next;

free(first_cell);

}

}

Figure 3.44 Routine to pop from a stack--linked list implementation

Notice that these operations are performed in not only constant time, but very

fast constant time. On some machines, pushes and pops (of integers) can be

written in one machine instruction, operating on a register with auto-increment

and auto-decrement addressing. The fact that most modern machines have stack

operations as part of the instruction set enforces the idea that the stack is

probably the most fundamental data structure in computer science, after the

array.

One problem that affects the efficiency of implementing stacks is error testing.

Our linked list implementation carefully checked for errors. As described above,

a pop on an empty stack or a push on a full stack will overflow the array bounds

and cause a crash. This is obviously undesirable, but if checks for these

conditions were put in the array implementation, they would likely take as much

time as the actual stack manipulation. For this reason, it has become a common

practice to skimp on error checking in the stack routines, except where error

handling is crucial (as in operating systems). Although you can probably get away

with this in most cases by declaring the stack to be large enough not to overflow

and ensuring that routines that use pop never attempt to pop an empty stack, this

can lead to code that barely works at best, especially when programs get large

and are written by more than one person or at more than one time. Because stack

operations take such fast constant time, it is rare that a significant part of

the running time of a program is spent in these routines. This means that it is

generally not justifiable to omit error checks. You should always write the error

checks; if they are redundant, you can always comment them out if they really

cost too much time. Having said all this, we can now write routines to implement

a general stack using arrays.

A STACK is defined in Figure 3.45 as a pointer to a structure. The structure

contains the top_of_stack and stack_size fields. Once the maximum size is known,

the stack array can be dynamically allocated. Figure 3.46 creates a stack of a

页码，27/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

given maximum size. Lines 3-5 allocate the stack structure, and lines 6-8

allocate the stack array. Lines 9 and 10 initialize the top_of_stack and

stack_size fields. The stack array does not need to be initialized. The stack is

returned at line 11.

The routine dispose_stack should be written to free the stack structure. This

routine first frees the stack array and then the stack structure (See Figure

3.47). Since create_stack requires an argument in the array implementation, but

not in the linked list implementation, the routine that uses a stack will need to

know which implementation is being used unless a dummy parameter is added for the

later implementation. Unfortunately, efficiency and software idealism often

create conflicts.

struct stack_record

{

unsigned int stack_size;

int top_of_stack;

element_type *stack_array;

};

typedef struct stack_record *STACK;

#define EMPTY_TOS (-1) /* Signifies an empty stack */

Figure 3.45 STACK definition--array implementaion

STACK

create_stack(unsigned int max_elements)

{

STACK S;

/*1*/ if(max_elements < MIN_STACK_SIZE)

/*2*/ error("Stack size is too small");

/*3*/ S = (STACK) malloc(sizeof(struct stack_record));

/*4*/ if(S == NULL)

/*5*/ fatal_error("Out of space!!!");

/*6*/ S->stack_array = (element_type *)

malloc(sizeof(element_type) * max_elements);

/*7*/ if(S->stack_array == NULL)

/*8*/ fatal_error("Out of space!!!");

页码，28/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*9*/ S->top_of_stack = EMPTY_TOS;

/*10*/ S->stack_size = max_elements;

/*11*/ return(S);

}

Figure 3.46 Stack creation--array implementaion

void

dispose_stack(STACK S)

{

if(S != NULL)

{

free(S->stack_array);

free(S);

}

}

Figure 3.47 Routine for freeing stack--array implementation

We have assumed that all stacks deal with the same type of element. In many

languages, if there are different types of stacks, then we need to rewrite a new

version of the stack routines for each different type, giving each version a

different name. A cleaner alternative is provided in C++, which allows one to

write a set of generic stack routines and essentially pass the type as an

argument.* C++ also allows stacks of several different types to retain the same

procedure and function names (such as push and pop): The compiler decides which

routines are implied by checking the type of the calling routine.

*This is somewhat of an oversimplification.

Having said all this, we will now rewrite the four stack routines. In true ADT
spirit, we will make the function and procedure heading look identical to the

linked list implementation. The routines themselves are very simple and follow

the written description exactly (see Figs. 3.48 to 3.52).

Pop is occasionally written as a function that returns the popped element (and

alters the stack). Although current thinking suggests that functions should not

change their input variables, Figure 3.53 illustrates that this is the most

convenient method in C.

int

is_empty(STACK S)

页码，29/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

{

return(S->top_of_stack == EMPTY_TOS);

}

Figure 3.48 Routine to test whether a stack is empty--array implementation

void

make_null(STACK S)

{

S->top_of_stack = EMPTY_TOS;

}

Figure 3.49 Routine to create an empty stack--array implementation

void

push(element_type x, STACK S)

{

if(is_full(S))

error("Full stack");

else

S->stack_array[++S->top_of_stack] = x;

}

Figure 3.50 Routine to push onto a stack--array implementation

element_type

top(STACK S)

{

if(is_empty(S))

error("Empty stack");

else

return S->stack_array[S->top_of_stack];

}

Figure 3.51 Routine to return top of stack--array implementation

页码，30/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

void

pop(STACK S)

{

if(is_empty(S))

error("Empty stack");

else

S->top_of_stack--;

}

Figure 3.52 Routine to pop from a stack--array implementation

element_type

pop(STACK S)

{

if(is_empty(S))

error("Empty stack");

else

return S->stack_array[S->top_of_stack--];

}

Figure 3.53 Routine to give top element and pop a stack--array implementation

3.3.3. Applications

It should come as no surprise that if we restrict the operations allowed on a

list, those operations can be performed very quickly. The big surprise, however,

is that the small number of operations left are so powerful and important. We

give three of the many applications of stacks. The third application gives a deep

insight into how programs are organized.

Balancing Symbols

Compilers check your programs for syntax errors, but frequently a lack of one

symbol (such as a missing brace or comment starter) will cause the compiler to

spill out a hundred lines of diagnostics without identifying the real error.

A useful tool in this situation is a program that checks whether everything is

balanced. Thus, every right brace, bracket, and parenthesis must correspond to

their left counterparts. The sequence [()] is legal, but [(]) is wrong.

Obviously, it is not worthwhile writing a huge program for this, but it turns out

页码，31/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

that it is easy to check these things. For simplicity, we will just check for

balancing of parentheses, brackets, and braces and ignore any other character

that appears.

The simple algorithm uses a stack and is as follows:

Make an empty stack. Read characters until end of file. If the character is an

open anything, push it onto the stack. If it is a close anything, then if the

stack is empty report an error. Otherwise, pop the stack. If the symbol popped is

not the corresponding opening symbol, then report an error. At end of file, if

the stack is not empty report an error.

You should be able to convince yourself that this algorithm works. It is clearly

linear and actually makes only one pass through the input. It is thus on-line and

quite fast. Extra work can be done to attempt to decide what to do when an error

is reported--such as identifying the likely cause.

Postfix Expressions

Suppose we have a pocket calculator and would like to compute the cost of a

shopping trip. To do so, we add a list of numbers and multiply the result by

1.06; this computes the purchase price of some items with local sales tax added.

If the items are 4.99, 5.99, and 6.99, then a natural way to enter this would be

the sequence

4.99 + 5.99 + 6.99
*

 1.06 =

Depending on the calculator, this produces either the intended answer, 19.05, or

the scientific answer, 18.39. Most simple four-function calculators will give the

first answer, but better calculators know that multiplication has higher

precedence than addition.

On the other hand, some items are taxable and some are not, so if only the first

and last items were actually taxable, then the sequence

4.99
*

 1.06 + 5.99 + 6.99
*

 1.06 =

would give the correct answer (18.69) on a scientific calculator and the wrong

answer (19.37) on a simple calculator. A scientific calculator generally comes

with parentheses, so we can always get the right answer by parenthesizing, but

with a simple calculator we need to remember intermediate results.

A typical evaluation sequence for this example might be to multiply 4.99 and

1.06, saving this answer as a

1

. We then add 5.99 and a

1

, saving the result in a

1

.

We multiply 6.99 and 1.06, saving the answer in a

2

, and finish by adding a

l

 and

a

2

, leaving the final answer in a

l

. We can write this sequence of operations as

follows:

4.99 1.06
*

 5.99 + 6.99 1.06
*

 +

This notation is known as postfix or reverse Polish notation and is evaluated

exactly as we have described above. The easiest way to do this is to use a stack.

页码，32/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

When a number is seen, it is pushed onto the stack; when an operator is seen, the

operator is applied to the two numbers (symbols) that are popped from the stack

and the result is pushed onto the stack. For instance, the postfix expression

6 5 2 3 + 8
*

+ 3 +
*

is evaluated as follows: The first four symbols are placed on the stack. The resulting stack is

Next a '+' is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed.

Next 8 is pushed.

Now a '

*'

 is seen, so 8 and 5 are popped as 8

*

 5 = 40 is pushed.

Next a '+' is seen, so 40 and 5 are popped and 40 + 5 = 45 is pushed.

Now, 3 is pushed.

页码，33/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Next '+' pops 3 and 45 and pushes 45 + 3 = 48.

Finally, a '

*'

 is seen and 48 and 6 are popped, the result 6

*

 48 = 288 is pushed.

The time to evaluate a postfix expression is O(n), because processing each element in the input

consists of stack operations and thus takes constant time. The algorithm to do so is very simple.

Notice that when an expression is given in postfix notation, there is no need to know any

precedence rules; this is an obvious advantage.

Infix to Postfix Conversion

Not only can a stack be used to evaluate a postfix expression, but we can also use a stack to

convert an expression in standard form (otherwise known as infix) into postfix. We will

concentrate on a small version of the general problem by allowing only the operators +,

*

, and

(,), and insisting on the usual precedence rules. We will further assume that the expression is

legal. Suppose we want to convert the infix expression

a + b

*

c + (d

*

e + f)

*

g

into postfix. A correct answer is a b c

*

 + d e

*

 f + g

*

 +.

When an operand is read, it is immediately placed onto the output. Operators are not immediately

output, so they must be saved somewhere. The correct thing to do is to place operators that have

been seen, but not placed on the output, onto the stack. We will also stack left parentheses when

they are encountered. We start with an initially empty stack.

If we see a right parenthesis, then we pop the stack, writing symbols until we encounter a

(corresponding) left parenthesis, which is popped but not output.

If we see any other symbol ('+','

*

', '('), then we pop entries from the stack until we find an

entry of lower priority. One exception is that we never remove a '(' from the stack except when

processing a ')'. For the purposes of this operation, '+' has lowest priority and '(' highest.

When the popping is done, we push the operand onto the stack.

页码，34/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Finally, if we read the end of input, we pop the stack until it is empty, writing symbols onto

the output.

To see how this algorithm performs, we will convert the infix expression above into its postfix

form. First, the symbol a is read, so it is passed through to the output. Then '+' is read and

pushed onto the stack. Next b is read and passed through to the output. The state of affairs at

this juncture is as follows:

Next a '

*

' is read. The top entry on the operator stack has lower precedence than '

*

', so nothing

is output and '

*

' is put on the stack. Next, c is read and output. Thus far, we have

The next symbol is a '+'. Checking the stack, we find that we will pop a '

*

' and place it on the

output, pop the other '+', which is not of lower but equal priority, on the stack, and then push

the '+'.

The next symbol read is an '(', which, being of highest precedence, is placed on the stack. Then

d is read and output.

We continue by reading a '

*

'. Since open parentheses do not get removed except when a closed

parenthesis is being processed, there is no output. Next, e is read and output.

页码，35/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The next symbol read is a '+'. We pop and output '

*

' and then push '+'. Then we read and output

.

Now we read a ')', so the stack is emptied back to the '('. We output a '+'.

We read a '

*

' next; it is pushed onto the stack. Then g is read and output.

The input is now empty, so we pop and output symbols from the stack until it is empty.

As before, this conversion requires only O(n) time and works in one pass through the input. We

can add subtraction and division to this repertoire by assigning subtraction and addition equal

priority and multiplication and division equal priority. A subtle point is that the expression a

- b - c will be converted to ab - c- and not abc - -. Our algorithm does the right thing, because

these operators associate from left to right. This is not necessarily the case in general, since

exponentiation associates right to left: 2

23
 = 2

8

 = 256 not 4

3

 = 64. We leave as an exercise the

problem of adding exponentiation to the repertoire of assignments.

Function Calls

The algorithm to check balanced symbols suggests a way to implement function calls. The problem

here is that when a call is made to a new function, all the variables local to the calling

routine need to be saved by the system, since otherwise the new function will overwrite the

calling routine's variables. Furthermore, the current location in the routine must be saved so

that the new function knows where to go after it is done. The variables have generally been

assigned by the compiler to machine registers, and there are certain to be conflicts (usually all

procedures get some variables assigned to register #1), especially if recursion is involved. The

reason that this problem is similar to balancing symbols is that a function call and function

return are essentially the same as an open parenthesis and closed parenthesis, so the same ideas

页码，36/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

should work.

When there is a function call, all the important information that needs to be saved, such as

register values (corresponding to variable names) and the return address (which can be obtained

from the program counter, which is typically in a register), is saved "on a piece of paper" in an

abstract way and put at the top of a pile. Then the control is transferred to the new function,

which is free to replace the registers with its values. If it makes other function calls, it

follows the same procedure. When the function wants to return, it looks at the "paper" at the top

of the pile and restores all the registers. It then makes the return jump.

Clearly, all of this work can be done using a stack, and that is exactly what happens in

virtually every programming language that implements recursion. The information saved is called

either an activation record or stack frame. The stack in a real computer frequently grows from

the high end of your memory partition downwards, and on many systems there is no checking for

overflow. There is always the possibility that you will run out of stack space by having too many

simultaneously active functions. Needless to say, running out of stack space is always a fatal

error.

In languages and systems that do not check for stack overflow, your program will crash without an

explicit explanation. On these systems, strange things may happen when your stack gets too big,

because your stack will run into part of your program. It could be the main program, or it could

be part of your data, especially if you have a big array. If it runs into your program, your

program will be corrupted; you will have nonsense instructions and will crash as soon as they are

executed. If the stack runs into your data, what is likely to happen is that when you write

something into your data, it will destroy stack information -- probably the return address -- and

your program will attempt to return to some weird address and crash.

In normal events, you should not run out of stack space; doing so is usually an indication of

runaway recursion (forgetting a base case). On the other hand, some perfectly legal and seemingly

innocuous program can cause you to run out of stack space. The routine in Figure 3.54, which

prints out a linked list, is perfectly legal and actually correct. It properly handles the base

case of an empty list, and the recursion is fine. This program can be proven correct.

Unfortunately, if the list contains 20,000 elements, there will be a stack of 20,000 activation

records representing the nested calls of line 3. Activation records are typically large because

of all the information they contain, so this program is likely to run out of stack space. (If

20,000 elements are not enough to make the program crash, replace the number with a larger one.)

This program is an example of an extremely bad use of recursion known as tail recursion. Tail

recursion refers to a recursive call at the last line. Tail recursion can be mechanically

eliminated by changing the recursive call to a goto preceded by one assignment per function

argument. This simulates the recursive call because nothing needs to be saved -- after the

recursive call finishes, there is really no need to know the saved values. Because of this, we

can just go to the top of the function with the values that would have been used in a recursive

call. The program in Figure 3.55 shows the improved version. Keep in mind that you should use the

more natural while loop construction. The goto is used here to show how a compiler might

automatically remove the recursion.

Removal of tail recursion is so simple that some compilers do it automatically. Even so, it is

best not to find out that yours does not.

void /* Not using a header */

print_list(LIST L)

{

/*1*/ if(L != NULL)

{

/*2*/ print_element(L->element);

页码，37/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

/*3*/ print_list(L->next);

}

}

Figure 3.54 A bad use of recursion: printing a linked list

void

print_list(LIST L) /* No header */

{

top:

if(L != NULL)

{

print_element(L->element);

L = L->next;

goto top;

}

}

Figure 3.55 Printing a list without recursion; a compiler might do this (you should not)

Recursion can always be completely removed (obviously, the compiler does so in converting to

assembly language), but doing so can be quite tedious. The general strategy requires using a

stack and is obviously worthwhile only if you can manage to put only the bare minimum on the

stack. We will not dwell on this further, except to point out that although nonrecursive programs

are certainly generally faster than recursive programs, the speed advantage rarely justifies the

lack of clarity that results from removing the recursion.

3.4. The Queue ADT

Like stacks, queues are lists. With a queue, however, insertion is done at one end, whereas

deletion is performed at the other end.

3.4.1. Queue Model

The basic operations on a queue are enqueue, which inserts an element at the end of the list

(called the rear), and dequeue, which deletes (and returns) the element at the start of the list

(known as the front). Figure 3.56 shows the abstract model of a queue.

页码，38/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Figure 3.56 Model of a queue

3.4.2. Array Implementation of Queues

As with stacks, any list implementation is legal for queues. Like stacks, both the linked list

and array implementations give fast O(1) running times for every operation. The linked list

implementation is straightforward and left as an exercise. We will now discuss an array

implementation of queues.

For each queue data structure, we keep an array, QUEUE[], and the positions q_front and q_rear,

which represent the ends of the queue. We also keep track of the number of elements that are

actually in the queue, q_size. All this information is part of one structure, and as usual,

except for the queue routines themselves, no routine should ever access these directly. The

following figure shows a queue in some intermediate state. By the way, the cells that are blanks

have undefined values in them. In particular, the first two cells have elements that used to be

in the queue.

The operations should be clear. To enqueue an element x, we increment q_size and q_rear, then set

QUEUE[q_rear] = x. To dequeue an element, we set the return value to QUEUE[q_front], decrement

q_size, and then increment q_front. Other strategies are possible (this is discussed later). We

will comment on checking for errors presently.

There is one potential problem with this implementation. After 10 enqueues, the queue appears to

be full, since q_front is now 10, and the next enqueue would be in a nonexistent position.

However, there might only be a few elements in the queue, because several elements may have

already been dequeued. Queues, like stacks, frequently stay small even in the presence of a lot

of operations.

The simple solution is that whenever q_front or q_rear gets to the end of the array, it is

wrapped around to the beginning. The following figure shows the queue during some operations.

This is known as a circular array implementation.

页码，39/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

The extra code required to implement the wraparound is minimal (although it probably doubles the

running time). If incrementing either q_rear or q_front causes it to go past the array, the value

is reset to the first position in the array.

There are two warnings about the circular array implementation of queues. First, it is important

to check the queue for emptiness, because a dequeue when the queue is empty will return an

undefined value, silently.

Secondly, some programmers use different ways of representing the front and rear of a queue. For

instance, some do not use an entry to keep track of the size, because they rely on the base case

that when the queue is empty, q_rear = q_front - 1. The size is computed implicitly by comparing

q_rear and q_front. This is a very tricky way to go, because there are some special cases, so be

very careful if you need to modify code written this way. If the size is not part of the

structure, then if the array size is A_SIZE, the queue is full when there are A_SIZE -1 elements,

since only A_SIZE different sizes can be differentiated, and one of these is 0. Pick any style

you like and make sure that all your routines are consistent. Since there are a few options for

implementation, it is probably worth a comment or two in the code, if you don't use the size

field.

页码，40/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

In applications where you are sure that the number of enqueues is not larger than the size of the

queue, obviously the wraparound is not necessary. As with stacks, dequeues are rarely performed

unless the calling routines are certain that the queue is not empty. Thus error calls are

frequently skipped for this operation, except in critical code. This is generally not

justifiable, because the time savings that you are likely to achieve are too minimal.

We finish this section by writing some of the queue routines. We leave the others as an exercise

to the reader. First, we give the type definitions in

Figure 3.57. We add a maximum size field,

as was done for the array implementation of the stack; queue_create and queue_dispose routines

also need to be provided. We also provide routines to test whether a queue is empty and to make

an empty queue (Figs. 3.58 and 3.59). The reader can write the function is_full, which performs

the test implied by its name. Notice that q_rear is preinitialized to 1 before q_front. The final

operation we will write is the enqueue routine. Following the exact description above, we arrive

at the implementation in Figure 3.60.

3.4.3. Applications of Queues

There are several algorithms that use queues to give efficient running times. Several of these

are found in graph theory, and we will discuss them later in

Chapter 9. For now, we will give

some simple examples of queue usage.

struct queue_record

{

unsigned int q_max_size; /* Maximum # of elements */

/* until Q is full */

unsigned int q_front;

unsigned int q_rear;

unsigned int q_size; /* Current # of elements in Q */

element_type *q_array;

};

typedef struct queue_record * QUEUE;

Figure 3.57 Type declarations for queue--array implementation

int

is_empty(QUEUE Q)

{

return(Q->q_size == 0);

}

Figure 3.58 Routine to test whether a queue is empty-array implementation

void

make_null (QUEUE Q)

{

页码，41/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

Q->q_size = 0;

Q->q_front = 1;

Q->q_rear = 0;

}

Figure 3.59 Routine to make an empty queue-array implementation

unsigned int

succ(unsigned int value, QUEUE Q)

{

if(++value == Q->q_max_size)

value = 0;

return value;

}

void

enqueue(element_type x, QUEUE Q)

{

if(is_full(Q))

error("Full queue");

else

{

Q->q_size++;

Q->q_rear = succ(Q->q_rear, Q);

Q->q_array[Q->q_rear] = x;

}

}

Figure 3.60 Routines to enqueue-array implementation

When jobs are submitted to a printer, they are arranged in order of arrival. Thus, essentially,

jobs sent to a line printer are placed on a queue.*

*We say essentially a queue, because jobs can be killed. This amounts to a deletion from the

middle of the queue, which is a violation of the strict definition.

Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket

counters are queues, because service is first-come first-served.

Another example concerns computer networks. There are many network setups of personal computers

in which the disk is attached to one machine, known as the file server. Users on other machines

页码，42/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

are given access to files on a first-come first-served basis, so the data structure is a queue.

Further examples include the following:

 Calls to large companies are generally placed on a queue when all operators are busy.

 In large universities, where resources are limited, students must sign a waiting list if all

terminals are occupied. The student who has been at a terminal the longest is forced off first,

and the student who has been waiting the longest is the next user to be allowed on.

A whole branch of mathematics, known as queueing theory, deals with computing, probabilistically,

how long users expect to wait on a line, how long the line gets, and other such questions. The

answer depends on how frequently users arrive to the line and how long it takes to process a user

once the user is served. Both of these parameters are given as probability distribution

functions. In simple cases, an answer can be computed analytically. An example of an easy case

would be a phone line with one operator. If the operator is busy, callers are placed on a waiting

line (up to some maximum limit). This problem is important for businesses, because studies have

shown that people are quick to hang up the phone.

If there are k operators, then this problem is much more difficult to solve. Problems that are

difficult to solve analytically are often solved by a simulation. In our case, we would need to

use a queue to perform the simulation. If k is large, we also need other data structures to do

this efficiently. We shall see how to do this simulation in Chapter 6. We could then run the

simulation for several values of k and choose the minimum k that gives a reasonable waiting time.

Additional uses for queues abound, and as with stacks, it is staggering that such a simple data

structure can be so important.

Summary

This chapter describes the concept of ADTs and illustrates the concept with three of the most
common abstract data types. The primary objective is to separate the implementation of the

abstract data types from their function. The program must know what the operations do, but it is

actually better off not knowing how it is done.

Lists, stacks, and queues are perhaps the three fundamental data structures in all of computer

science, and their use is documented through a host of examples. In particular, we saw how stacks

are used to keep track of procedure and function calls and how recursion is actually implemented.

This is important to understand, not just because it makes procedural languages possible, but

because knowing how recursion is implemented removes a good deal of the mystery that surrounds

its use. Although recursion is very powerful, it is not an entirely free operation; misuse and

abuse of recursion can result in programs crashing.

Exercises

3.1 Write a program to print out the elements of a singly linked list.

3.2 You are given a linked list, L, and another linked list, P, containing integers, sorted in

ascending order. The operation print_lots(L,P) will print the elements in L that are in positions

specified by P. For instance, if P = 1, 3, 4, 6, the first, third, fourth, and sixth elements in

L are printed. Write the routine print_lots(L,P). You should use only the basic list operations.

What is the running time of your routine?

3.3 Swap two adjacent elements by adjusting only the pointers (and not the data) using

页码，43/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

a. singly linked lists,

b. doubly linked lists.

3.4 Given two sorted lists, L

1

 and L

2

, write a procedure to compute L

1

 L

2

 using only the

basic list operations.

3.5 Given two sorted lists, L

1

 and L

2

, write a procedure to compute L

1

 L

2

 using only the

basic list operations.

3.6 Write a function to add two polynomials. Do not destroy the input. Use a linked list

implementation. If the polynomials have m and n terms respectively, what is the time complexity

of your program?

3.7 Write a function to multiply two polynomials, using a linked list implementation. You must

make sure that the output polynomial is sorted by exponent and has at most one term of any power.

a. Give an algorithm to solve this problem in O(m

2

n

2

) time.

*b. Write a program to perform the multiplication in O(m

2

n) time, where m is the number of terms

in the polynomial of fewer terms.

*c. Write a program to perform the multiplication in O(mn log(mn)) time.

d. Which time bound above is the best?

3.8 Write a program that takes a polynomial, (x), and computes ((x))

p

. What is the

complexity of your program? Propose at least one alternative solution that could be competitive

for some plausible choices of (x) and p.

3.9 Write an arbitrary-precision integer arithmetic package. You should use a strategy similar to

polynomial arithmetic. Compute the distribution of the digits 0 to 9 in 2

4000

.

3.10 The Josephus problem is the following mass suicide "game": n people, numbered 1 to n, are

sitting in a circle. Starting at person 1, a handgun is passed. After m passes, the person

holding the gun commits suicide, the body is removed, the circle closes ranks, and the game

continues with the person who was sitting after the corpse picking up the gun. The last survivor

is tried for n - 1 counts of manslaughter. Thus, if m = 0 and n = 5, players are killed in order

and player 5 stands trial. If m = 1 and n = 5, the order of death is 2, 4, 1, 5.

a. Write a program to solve the Josephus problem for general values of m and n. Try to make your

program as efficient as possible. Make sure you dispose of cells.

b. What is the running time of your program?

c. If m = 1, what is the running time of your program? How is the actual speed affected by the

free routine for large values of n (n > 10000)?

3.11 Write a program to find a particular element in a singly linked list. Do this both

recursively and nonrecursively, and compare the running times. How big does the list have to be

页码，44/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

before the recursive version crashes?

3.12 a. Write a nonrecursive procedure to reverse a singly linked list in O(n) time.

*b. Write a procedure to reverse a singly linked list in O(n) time using constant extra space.

3.13 You have to sort an array of student records by social security number. Write a program to

do this, using radix sort with 1000 buckets and three passes.

3.14 Write a program to read a graph into adjacency lists using

a. linked lists

b. cursors

3.15 a. Write an array implementation of self-adjusting lists. A self-adjusting list is like a

regular list, except that all insertions are performed at the front, and when an element is

accessed by a find, it is moved to the front of the list without changing the relative order of

the other items.

b. Write a linked list implementation of self-adjusting lists.

*c. Suppose each element has a fixed probability, p

i

, of being accessed. Show that the elements

with highest access probability are expected to be close to the front.

3.16 Suppose we have an array-based list a[0..n -1] and we want to delete all duplicates.

last_position is initially n - 1, but gets smaller as elements are deleted. Consider the

pseudocode program fragment in Figure 3.61. The procedure DELETE deletes the element in position

j and collapses the list.

a. Explain how this procedure works.

b. Rewrite this procedure using general list operations.

/*1*/ for(i=0; i<last_position; i++)

{

/*2*/ j = i + 1;

/*3*/ while(j<last_position)

/*4*/ if(a[i] == a[j]

/*5*/ DELETE(j);

 else

/*6*/ j++;

}

Figure 3.61 Routine to remove duplicates from a lists--array implementation

*c. Using a standard array implementation, what is the running time of this procedure?

页码，45/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

d. What is the running time using a linked list implementation?

*e. Give an algorithm to solve this problem in O(n log n) time.

**f. Prove that any algorithm to solve this problem requires (n log n) comparisons if only

comparisons are used. Hint: Look to

Chapter 7.

*g. Prove that if we allow operations besides comparisons, and the keys are real numbers, then we

can solve the problem without using comparisons between elements.

3.17 An alternative to the deletion strategy we have given is to use lazy deletion. To delete an

element, we merely mark it deleted (using an extra bit field). The number of deleted and

nondeleted elements in the list is kept as part of the data structure. If there are as many

deleted elements as nondeleted elements, we traverse the entire list, performing the standard

deletion algorithm on all marked nodes.

a. List the advantages and disadvantages of lazy deletion.

b. Write routines to implement the standard linked list operations using lazy deletion.

3.18 Write a program to check for balancing symbols in the following languages:

a. Pascal (begin/end, (), [], { }).

b. C (/* */, (), [], { }).

*c. Explain how to print out an error message that is likely to reflect the probable cause.

3.19 Write a program to evaluate a postfix expression.

3.20 a. Write a program to convert an infix expression which includes '(', ')', '+', '-', '*' and

'/' to postfix.

b. Add the exponentiation operator to your repertoire.

c. Write a program to convert a postfix expression to infix.

3.21 Write routines to implement two stacks using only one array. Your stack routines should not

declare an overflow unless every slot in the array is used.

3.22 *a. Propose a data structure that supports the stack push and pop operations and a third

operation find_min, which returns the smallest element in the data structure, all in O(1) worst

case time.

*b. Prove that if we add the fourth operation delete_min which finds and removes the smallest

element, then at least one of the operations must take (logn) time. (This requires reading

Chapter 7.)

3.23 *Show how to implement three stacks in one array.

3.24 If the recursive routine in Section 2.4 used to compute Fibonacci numbers is run for n = 50,

is stack space likely to run out? Why or why not?

页码，46/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

3.25 Write the routines to implement queues using

a. linked lists

b. arrays

3.26 A deque is a data structure consisting of a list of items, on which the following operations

are possible:

push(x,d): Insert item x on the front end of deque d.

pop(d): Remove the front item from deque d and return it.

inject(x,d): Insert item x on the rear end of deque d.

eject(d): Remove the rear item from deque d and return it.

Write routines to support the deque that take O(1) time per operation.

Go to

Chapter 4 Return to Table of Contents

页码，47/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...

