
CHAPTER 3: 

LISTS, STACKS, AND QUEUES 

This chapter discusses three of the most simple and basic data structures. 

Virtually every significant program will use at least one of these structures 

explicitly, and a stack is always implicitly used in your program, whether or not 

you declare one. Among the highlights of this chapter, we will  

 Introduce the concept of Abstract Data Types (ADTs).  

 Show how to efficiently perform operations on lists.  

 Introduce the stack ADT and its use in implementing recursion.  

 Introduce the queue ADT and its use in operating systems and algorithm 
design.  

Because these data structures are so important, one might expect that they are 

hard to implement. In fact, they are extremely easy to code up; the main 

difficulty is keeping enough discipline to write good general-purpose code for 

routines that are generally only a few lines long.  

3.1. Abstract Data Types (ADTs) 

One of the basic rules concerning programming is that no routine should ever 

exceed a page. This is accomplished by breaking the program down into modules. 

Each module is a logical unit and does a specific job. Its size is kept small by 

calling other modules. Modularity has several advantages. First, it is much 

easier to debug small routines than large routines. Second, it is easier for 

several people to work on a modular program simultaneously. Third, a well-written 

modular program places certain dependencies in only one routine, making changes 

easier. For instance, if output needs to be written in a certain format, it is 

certainly important to have one routine to do this. If printing statements are 

scattered throughout the program, it will take considerably longer to make 

modifications. The idea that global variables and side effects are bad is 

directly attributable to the idea that modularity is good.  

An abstract data type (ADT) is a set of operations. Abstract data types are 
mathematical abstractions; nowhere in an ADT's definition is there any mention 
of how the set of operations is implemented. This can be viewed as an extension 

of modular design.  

Objects such as lists, sets, and graphs, along with their operations, can be 

viewed as abstract data types, just as integers, reals, and booleans are data 

types. Integers, reals, and booleans have operations associated with them, and so 

do abstract data types. For the set ADT, we might have such operations as union, 
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intersection, size, and complement. Alternately, we might only want the two 

operations union and find, which would define a different ADT on the set.  

The basic idea is that the implementation of these operations is written once in 

the program, and any other part of the program that needs to perform an operation 

on the ADT can do so by calling the appropriate function. If for some reason 
implementation details need to change, it should be easy to do so by merely 

changing the routines that perform the ADT operations. This change, in a perfect 

world, would be completely transparent to the rest of the program.  

There is no rule telling us which operations must be supported for each ADT; 
this is a design decision. Error handling and tie breaking (where appropriate) 

are also generally up to the program designer. The three data structures that we 

will study in this chapter are primary examples of ADTs. We will see how each 
can be implemented in several ways, but if they are done correctly, the programs 

that use them will not need to know which implementation was used.  

3.2. The List ADT 

We will deal with a general list of the form a

1

, a

2

, a

3

, . . . , a

n

. We say that 

the size of this list is n. We will call the special list of size 0 a null list. 

For any list except the null list, we say that a

i+l

 follows (or succeeds) a

i 

(i < 

n) and that a

i-1

 precedes a

i

 (i > 1). The first element of the list is a

1

, and 

the last element is a

n

. We will not define the predecessor of a

1

 or the successor 

of a

n

. The position of element a

i

 in a list is i. Throughout this discussion, we 

will assume, to simplify matters, that the elements in the list are integers, but 

in general, arbitrarily complex elements are allowed.  

Associated with these "definitions" is a set of operations that we would like to 

perform on the list ADT. Some popular operations are print_list and make_null, 
which do the obvious things; find, which returns the position of the first 

occurrence of a key; insert and delete, which generally insert and delete some 

key from some position in the list; and find_kth, which returns the element in 

some position (specified as an argument). If the list is 34, 12, 52, 16, 12, then 

find(52) might return 3; insert(x,3) might make the list into 34, 12, 52, x, 16, 

12 (if we insert after the position given); and delete(3) might turn that list 

into 34, 12, x, 16, 12.  

Of course, the interpretation of what is appropriate for a function is entirely 

up to the programmer, as is the handling of special cases (for example, what does 

find(1) return above?). We could also add operations such as next and previous, 

which would take a position as argument and return the position of the successor 

and predecessor, respectively.  

3.2.1. Simple Array Implementation of Lists 

Obviously all of these instructions can be implemented just by using an array. 

Even if the array is dynamically allocated, an estimate of the maximum size of 

the list is required. Usually this requires a high over-estimate, which wastes 
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considerable space. This could be a serious limitation, especially if there are 

many lists of unknown size.  

An array implementation allows print_list and find to be carried out in linear 

time, which is as good as can be expected, and the find_kth operation takes 

constant time. However, insertion and deletion are expensive. For example, 

inserting at position 0 (which amounts to making a new first element) requires 

first pushing the entire array down one spot to make room, whereas deleting the 

first element requires shifting all the elements in the list up one, so the worst 

case of these operations is O(n). On average, half the list needs to be moved for 

either operation, so linear time is still required. Merely building a list by n 

successive inserts would require quadratic time.  

Because the running time for insertions and deletions is so slow and the list 

size must be known in advance, simple arrays are generally not used to implement 

lists.  

3.2.2. Linked Lists 

In order to avoid the linear cost of insertion and deletion, we need to ensure 

that the list is not stored contiguously, since otherwise entire parts of the 

list will need to be moved. Figure 3.1 shows the general idea of a linked list.  

The linked list consists of a series of structures, which are not necessarily 

adjacent in memory. Each structure contains the element and a pointer to a 

structure containing its successor. We call this the next pointer. The last 

cell's next pointer points to ; this value is defined by C and cannot be confused 

with another pointer. ANSI C specifies that is zero.  

Recall that a pointer variable is just a variable that contains the address where 

some other data is stored. Thus, if p is declared to be a pointer to a structure, 

then the value stored in p is interpreted as the location, in main memory, where 

a structure can be found. A field of that structure can be accessed by p

field_name, where field_name is the name of the field we wish to examine. 

Figure 3.2 shows the actual representation of the list in Figure 3.1. The list 

contains five structures, which happen to reside in memory locations 1000, 800, 

712, 992, and 692 respectively. The next pointer in the first structure has the 

value 800, which provides the indication of where the second structure is. The 

other structures each have a pointer that serves a similar purpose. Of course, in 

order to access this list, we need to know where the first cell can be found. A 

pointer variable can be used for this purpose. It is important to remember that a 

pointer is just a number. For the rest of this chapter, we will draw pointers 

with arrows, because they are more illustrative.  

  

Figure 3.1 A linked list 

页码，3/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



  

Figure 3.2 Linked list with actual pointer values 

  

Figure 3.3 Deletion from a linked list 

  

Figure 3.4 Insertion into a linked list 

To execute print_list(L) or find(L,key), we merely pass a pointer to the first 

element in the list and then traverse the list by following the next pointers. 

This operation is clearly linear-time, although the constant is likely to be 

larger than if an array implementation were used. The find_kth operation is no 

longer quite as efficient as an array implementation; find_kth(L,i) takes O(i) 

time and works by traversing down the list in the obvious manner. In practice, 

this bound is pessimistic, because frequently the calls to find_kth are in sorted 

order (by i). As an example, find_kth(L,2), find_kth(L,3), find_kth(L,4), 

find_kth(L,6) can all be executed in one scan down the list.  

The delete command can be executed in one pointer change. Figure 3.3 shows the 

result of deleting the third element in the original list.  

The insert command requires obtaining a new cell from the system by using an 

malloc call (more on this later) and then executing two pointer maneuvers. The 

general idea is shown in Figure 3.4. The dashed line represents the old pointer. 

3.2.3. Programming Details 

The description above is actually enough to get everything working, but there are 

several places where you are likely to go wrong. First of all, there is no really 

obvious way to insert at the front of the list from the definitions given. 

Second, deleting from the front of the list is a special case, because it changes 

the start of the list; careless coding will lose the list. A third problem 

concerns deletion in general. Although the pointer moves above are simple, the 

deletion algorithm requires us to keep track of the cell before the one that we 

want to delete.  
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Figure 3.5 Linked list with a header 

It turns out that one simple change solves all three problems. We will keep a 

sentinel node, which is sometimes referred to as a header or dummy node. This is 

a common practice, which we will see several times in the future. Our convention 

will be that the header is in position 0. Figure 3.5 shows a linked list with a 

header representing the list a

1

, a

2

, . . . , a

5

.  

To avoid the problems associated with deletions, we need to write a routine 

find_previous, which will return the position of the predecessor of the cell we 

wish to delete. If we use a header, then if we wish to delete the first element 

in the list, find_previous will return the position of the header. The use of a 

header node is somewhat controversial. Some people argue that avoiding special 

cases is not sufficient justification for adding fictitious cells; they view the 

use of header nodes as little more than old-style hacking. Even so, we will use 

them here, precisely because they allow us to show the basic pointer 

manipulations without obscuring the code with special cases. Otherwise, whether 

or not a header should be used is a matter of personal preference.  

As examples, we will write about half of the list ADT routines. First, we need 
our declarations, which are given in Figure 3.6.  

The first function that we will write tests for an empty list. When we write code 

for any data structure that involves pointers, it is always best to draw a 

picture first. Figure 3.7 shows an empty list; from the figure it is easy to 

write the function in Figure 3.8.  

The next function, which is shown in Figure 3.9, tests whether the current 

element, which by assumption exists, is the last of the list.  

typedef struct node *node_ptr; 

struct node 

{ 

element_type element; 

node_ptr next; 

}; 

typedef node_ptr LIST; 

typedef node_ptr position; 

Figure 3.6 Type declarations for linked lists 
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Figure 3.7 Empty list with header 

int 

is_empty( LIST L ) 

{ 

return( L->next == NULL ); 

} 

Figure 3.8 Function to test whether a linked list is empty 

int 

is_last( position p, LIST L ) 

{ 

return( p->next == NULL ); 

} 

Figure 3.9 Function to test whether current position is the last in a linked list

The next routine we will write is find. Find, shown in Figure 3.10, returns the 

position in the list of some element. Line 2 takes advantage of the fact that the 

and (&&) operation is short-circuited: if the first half of the and is false, the 

result is automatically false and the second half is not executed.  

/* Return position of x in L; NULL if not found */ 

position 

find ( element_type x, LIST L ) 

{ 

position p; 

/*1*/        p = L->next; 

/*2*/        while( (p != NULL) && (p->element != x) ) 

/*3*/        p = p->next; 

/*4*/        return p; 
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} 

Figure 3.10 Find routine 

Some programmers find it tempting to code the find routine recursively, possibly 

because it avoids the sloppy termination condition. We shall see later that this 

is a very bad idea and should be avoided at all costs.  

Our fourth routine will delete some element x in list L. We need to decide what 

to do if x occurs more than once or not at all. Our routine deletes the first 

occurrence of x and does nothing if x is not in the list. To do this, we find p, 

which is the cell prior to the one containing x, via a call to find_previous. The 

code to implement this is shown in Figure 3.11. The find_previous routine is 

similar to find and is shown in Figure 3.12.  

The last routine we will write is an insertion routine. We will pass an element 

to be inserted along with the list L and a position p. Our particular insertion 

routine will insert an element after the position implied by p. This decision is 

arbitrary and meant to show that there are no set rules for what insertion does. 

It is quite possible to insert the new element into position p (which means 

before the element currently in position p), but doing this requires knowledge of 

the element before position p. This could be obtained by a call to find_previous. 

It is thus important to comment what you are doing. This has been done in Figure 

3.13.  

Notice that we have passed the list to the insert and is_last routines, even 

though it was never used. We did this because another implementation might need 

this information, and so not passing the list would defeat the idea of using 

ADTs.*  

* This is legal, but some compilers will issue a warning.  

/* Delete from a list. Cell pointed */ 

/* to by p->next is wiped out. */ 

/* Assume that the position is legal. */ 

/* Assume use of a header node. */ 

void 

delete( element_type x, LIST L ) 

{ 

position p, tmp_cell; 

p = find_previous( x, L ); 

if( p->next != NULL )  /* Implicit assumption of header use */ 

{                      /* x is found: delete it */ 
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tmp_cell = p->next; 

p->next = tmp_cell->next; /* bypass the cell to be deleted */ 

free( tmp_cell ); 

} 

} 

Figure 3.11 Deletion routine for linked lists 

/* Uses a header. If element is not found, then next field */ 

/* of returned value is NULL */ 

position 

find_previous( element_type x, LIST L ) 

{ 

position p; 

/*1*/  p = L; 

/*2*/  while( (p->next != NULL) && (p->next->element != x) ) 

/*3*/       p = p->next; 

/*4*/  return p; 

} 

Figure 3.12 Find_previous--the find routine for use with delete 

/* Insert (after legal position p).*/ 

/* Header implementation assumed. */ 

void 

insert( element_type x, LIST L, position p ) 

{ 

position tmp_cell; 

/*1*/        tmp_cell = (position) malloc( sizeof (struct node) ); 

/*2*/        if( tmp_cell == NULL ) 

/*3*/              fatal_error("Out of space!!!"); 

else 
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{ 

/*4*/              tmp_cell->element = x; 

/*5*/              tmp_cell->next = p->next; 

/*6*/              p->next = tmp_cell; 

} 

} 

Figure 3.13 Insertion routine for linked lists 

With the exception of the find and find_previous routines, all of the operations 

we have coded take O(1) time. This is because in all cases only a fixed number of 

instructions are performed, no matter how large the list is. For the find and 

find_previous routines, the running time is O(n) in the worst case, because the 

entire list might need to be traversed if the element is either not found or is 

last in the list. On average, the running time is O(n), because on average, half 

the list must be traversed.  

We could write additional routines to print a list and to perform the next 

function. These are fairly straightforward. We could also write a routine to 

implement previous. We leave these as exercises.  

3.2.4. Common Errors 

The most common error that you will get is that your program will crash with a 

nasty error message from the system, such as "memory access violation" or 

"segmentation violation." This message usually means that a pointer variable 

contained a bogus address. One common reason is failure to initialize the 

variable. For instance, if line 1 in Figure 3.14 is omitted, then p is undefined 

and is not likely to be pointing at a valid part of memory. Another typical error 

would be line 6 in Figure 3.13. If p is , then the indirection is illegal. This 

function knows that p is not , so the routine is OK. Of course, you should 

comment this so that the routine that calls insert will insure this. Whenever you 

do an indirection, you must make sure that the pointer is not NULL. Some C 

compliers will implicity do this check for you, but this is not part of the C 

standard. When you port a program from one compiler to another, you may find that 

it no longer works. This is one of the common reasons why.  

The second common mistake concerns when and when not to use malloc to get a new 

cell. You must remember that declaring a pointer to a structure does not create 

the structure but only gives enough space to hold the address where some 

structure might be. The only way to create a record that is not already declared 

is to use the malloc command. The command malloc(size_p) has the system create, 

magically, a new structure and return a pointer to it. If, on the other hand, you 

want to use a pointer variable to run down a list, there is no need to declare a 

new structure; in that case the malloc command is inappropriate. A type cast is 

used to make both sides of the assignment operator compatible. The C library 

provides other variations of malloc such as calloc.  
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void 

delete_list( LIST L ) 

{ 

position p; 

/*1*/        p = L->next;        /* header assumed */ 

/*2*/        L->next = NULL; 

/*3*/        while( p != NULL ) 

{ 

/*4*/             free( p ); 

/*5*/             p = p->next; 

} 

} 

Figure 3.14 Incorrect way to delete a list 

When things are no longer needed, you can issue a free command to inform the 

system that it may reclaim the space. A consequence of the free(p) command is 

that the address that p is pointing to is unchanged, but the data that resides at 

that address is now undefined.  

If you never delete from a linked list, the number of calls to malloc should 

equal the size of the list, plus 1 if a header is used. Any less, and you cannot 

possibly have a working program. Any more, and you are wasting space and probably 

time. Occasionally, if your program uses a lot of space, the system may be unable 

to satisfy your request for a new cell. In this case a pointer is returned.  

After a deletion in a linked list, it is usually a good idea to free the cell, 

especially if there are lots of insertions and deletions intermingled and memory 

might become a problem. You need to keep a temporary variable set to the cell to 

be disposed of, because after the pointer moves are finished, you will not have a 

reference to it. As an example, the code in Figure 3.14 is not the correct way to 

delete an entire list (although it may work on some systems).  

Figure 3.15 shows the correct way to do this. Disposal is not necessarily a fast 

thing, so you might want to check to see if the disposal routine is causing any 

slow performance and comment it out if this is the case. This author has written 

a program (see the exercises) that was made 25 times faster by commenting out the 

disposal (of 10,000 nodes). It turned out that the cells were freed in a rather 

peculiar order and apparently caused an otherwise linear program to spend O(n log 

n) time to dispose of n cells.  

One last warning: malloc(sizeof node_ptr) is legal, but it doesn't allocate 

enough space for a structure. It allocates space only for a pointer.  
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void 

delete_list( LIST L ) 

{ 

position p, tmp; 

/*1*/        p = L->next;   /
*

 header assumed 
*

/

 

/*2*/        L->next = NULL; 

/*3*/        while( p != NULL ) 

{ 

/*4*/             tmp = p->next; 

/*5*/             free( p ); 

/*6*/             p = tmp; 

} 

} 

Figure 3.15 Correct way to delete a list 

  

Figure 3.16 A doubly linked list 

3.2.5. Doubly Linked Lists 

Sometimes it is convenient to traverse lists backwards. The standard 

implementation does not help here, but the solution is simple. Merely add an 

extra field to the data structure, containing a pointer to the previous cell. The 

cost of this is an extra link, which adds to the space requirement and also 

doubles the cost of insertions and deletions because there are more pointers to 

fix. On the other hand, it simplifies deletion, because you no longer have to 

refer to a key by using a pointer to the previous cell; this information is now 

at hand. Figure 3.16 shows a doubly linked list.  

3.2.6. Circularly Linked Lists 

A popular convention is to have the last cell keep a pointer back to the first. 

This can be done with or without a header (if the header is present, the last 

cell points to it), and can also be done with doubly linked lists (the first 

cell's previous pointer points to the last cell). This clearly affects some of 

the tests, but the structure is popular in some applications. Figure 3.17 shows a 

double circularly linked list with no header.  
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3.2.7. Examples 

We provide three examples that use linked lists. The first is a simple way to 

represent single-variable polynomials. The second is a method to sort in linear 

time, for some special cases. Finally, we show a complicated example of how 

linked lists might be used to keep track of course registration at a university. 

The Polynomial ADT 

We can define an abstract data type for single-variable polynomials (with 

nonnegative exponents) by using a list. Let . If most of the 

coefficients a

i

 are nonzero, we can use a simple array to store the coefficients. 

We could then write routines to perform addition, subtraction, multiplication, 

differentiation, and other operations on these polynomials. In this case, we 

might use the type declarations given in Figure 3.18. We could then write 

routines to perform various operations. Two possibilities are addition and 

multiplication. These are shown in Figures 3.19 to 3.21. Ignoring the time to 

initialize the output polynomials to zero, the running time of the multiplication 

routine is proportional to the product of the degree of the two input 

polynomials. This is adequate for dense polynomials, where most of the terms are 

present, but if p

1

(x) = 10x

1000

 + 5x

14

 + 1 and p

2

(x) = 3x

1990

 - 2x

1492

 + 11x + 5, 

then the running time is likely to be unacceptable. One can see that most of the 

time is spent multiplying zeros and stepping through what amounts to nonexistent 

parts of the input polynomials. This is always undesirable.  

  

Figure 3.17 A double circularly linked list 

typedef struct 

{ 

int coeff_array[ MAX_DEGREE+1 ]; 

unsigned int high_power; 

} *POLYNOMIAL; 

Figure 3.18 Type declarations for array implementation of the polynomial ADT 

An alternative is to use a singly linked list. Each term in the polynomial is 

contained in one cell, and the cells are sorted in decreasing order of exponents. 

For instance, the linked lists in Figure 3.22 represent p

1

(x) and p

2

(x). We could 

then use the declarations in Figure 3.23.  

void 
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zero_polynomial( POLYNOMIAL poly ) 

{ 

unsigned int i; 

for( i=0; i<=MAX_DEGREE; i++ ) 

poly->coeff_array[i] = 0; 

poly->high_power = 0; 

} 

Figure 3.19 Procedure to initialize a polynomial to zero 

void 

add_polynomial( POLYNOMIAL poly1, POLYNOMIAL poly2, 

POLYNOMIAL poly_sum ) 

{ 

int i; 

zero_polynomial( poly_sum ); 

poly_sum->high_power = max( poly1->high_power, 

poly2->high_power); 

for( i=poly_sum->high_power; i>=0; i-- ) 

poly_sum->coeff_array[i] = poly1->coeff_array[i] 

+ poly2->coeff_array[i]; 

} 

Figure 3.20 Procedure to add two polynomials 

void 

mult_polynomial( POLYNOMIAL poly1, POLYNOMIAL poly2, 

POLYNOMIAL poly_prod ) 

{ 

unsigned int i, j; 

zero_polynomial( poly_prod ); 

poly_prod->high_power = poly1->high_power 
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+ poly2->high_power; 

if( poly_prod->high_power > MAX_DEGREE ) 

error("Exceeded array size"); 

else 

for( i=0; i<=poly->high_power; i++ ) 

for( j=0; j<=poly2->high_power; j++ ) 

poly_prod->coeff_array[i+j] += 

poly1->coeff_array[i] * poly2->coeff_array[j]; 

} 

Figure 3.21 Procedure to multiply two polynomials 

  

Figure 3.22 Linked list representations of two polynomials 

typedef struct node 
*

node_ptr;

 

struct node 

{ 

int coefficient; 

int exponent; 

node_ptr next; 

} ; 

typedef node_ptr POLYNOMIAL; /
*

 keep nodes sorted by exponent */

 

Figure 3.23 Type declaration for linked list implementation of the Polynomial 

ADT 

The operations would then be straightforward to implement. The only potential 

difficulty is that when two polynomials are multiplied, the resultant polynomial 

will have to have like terms combined. There are several ways to do this, but we 

will leave this as an exercise.  
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Radix Sort 

A second example where linked lists are used is called radix sort. Radix sort is 

sometimes known as card sort, because it was used, until the advent of modern 

computers, to sort old-style punch cards.  

If we have n integers in the range 1 to m (or 0 to m - 1) 9, we can use this 

information to obtain a fast sort known as bucket sort. We keep an array called 

count, of size m, which is initialized to zero. Thus, count has m cells (or 

buckets), which are initially empty. When a

i

 is read, increment (by one) count

[a

i

]. After all the input is read, scan the count array, printing out a 

representation of the sorted list. This algorithm takes O(m + n); the proof is 

left as an exercise. If m = (n), then bucket sort is O(n).  

Radix sort is a generalization of this. The easiest way to see what happens is by 

example. Suppose we have 10 numbers, in the range 0 to 999, that we would like to 

sort. In general, this is n numbers in the range 0 to n

p

 - 1 for some constant p.

Obviously, we cannot use bucket sort; there would be too many buckets. The trick 

is to use several passes of bucket sort. The natural algorithm would be to 

bucket-sort by the most significant "digit" (digit is taken to base n), then next 

most significant, and so on. That algorithm does not work, but if we perform 

bucket sorts by least significant "digit" first, then the algorithm works. Of 

course, more than one number could fall into the same bucket, and, unlike the 

original bucket sort, these numbers could be different, so we keep them in a 

list. Notice that all the numbers could have some digit in common, so if a simple 

array were used for the lists, then each array would have to be of size n, for a 

total space requirement of (n

2

). 

 

The following example shows the action of radix sort on 10 numbers. The input is 

64, 8, 216, 512, 27, 729, 0, 1, 343, 125 (the first ten cubes arranged randomly). 

The first step bucket sorts by the least significant digit. In this case the math 

is in base 10 (to make things simple), but do not assume this in general. The 

buckets are as shown in Figure 3.24, so the list, sorted by least significant 

digit, is 0, 1, 512, 343, 64, 125, 216, 27, 8, 729. These are now sorted by the 

next least significant digit (the tens digit here) (see Fig. 3.25). Pass 2 gives 

output 0, 1, 8, 512, 216, 125, 27, 729, 343, 64. This list is now sorted with 

respect to the two least significant digits. The final pass, shown in Figure 

3.26, bucket-sorts by most significant digit. The final list is 0, 1, 8, 27, 64, 

125, 216, 343, 512, 729.  

To see that the algorithm works, notice that the only possible failure would 

occur if two numbers came out of the same bucket in the wrong order. But the 

previous passes ensure that when several numbers enter a bucket, they enter in 

sorted order. The running time is O(p(n + b)) where p is the number of passes, n 

is the number of elements to sort, and b is the number of buckets. In our case, b

= n.  

  0  1  512  343  64  125  216  27  8  729 

------------------------------------------- 
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  0  1    2    3   4    5    6   7  8    9 

Figure 3.24 Buckets after first step of radix sort 

  8       729 

  1  216   27 

  0  512  125     343     64 

-------------------------------------- 

  0    1    2  3    4  5   6  7  8  9 

Figure 3.25 Buckets after the second pass of radix sort 

  64 

  27 

   8 

   1 

   0  125  216  343     512     729 

------------------------------------------ 

   0    1    2    3  4    5  6    7  8  9 

Figure 3.26 Buckets after the last pass of radix sort 

As an example, we could sort all integers that are representable on a computer 

(32 bits) by radix sort, if we did three passes over a bucket size of 2

11

. This 

algorithm would always be O(n) on this computer, but probably still not as 

efficient as some of the algorithms we shall see in Chapter 7, because of the 

high constant involved (remember that a factor of log n is not all that high, and 

this algorithm would have the overhead of maintaining linked lists).  

Multilists 

Our last example shows a more complicated use of linked lists. A university with 

40,000 students and 2,500 courses needs to be able to generate two types of 

reports. The first report lists the class registration for each class, and the 

second report lists, by student, the classes that each student is registered for. 

The obvious implementation might be to use a two-dimensional array. Such an array 

would have 100 million entries. The average student registers for about three 

courses, so only 120,000 of these entries, or roughly 0.1 percent, would actually 

have meaningful data.  

What is needed is a list for each class, which contains the students in the 

class. We also need a list for each student, which contains the classes the 

student is registered for. Figure 3.27 shows our implementation.  
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As the figure shows, we have combined two lists into one. All lists use a header 

and are circular. To list all of the students in class C3, we start at C3 and 

traverse its list (by going right). The first cell belongs to student S1. 

Although there is no explicit information to this effect, this can be determined 

by following the student's linked list until the header is reached. Once this is 

done, we return to C3's list (we stored the position we were at in the course 

list before we traversed the student's list) and find another cell, which can be 

determined to belong to S3. We can continue and find that S4 and S5 are also in 

this class. In a similar manner, we can determine, for any student, all of the 

classes in which the student is registered.  

  

Figure 3.27 Multilist implementation for registration problem 

Using a circular list saves space but does so at the expense of time. In the 

worst case, if the first student was registered for every course, then every 

entry would need to be examined in order to determine all the course names for 

that student. Because in this application there are relatively few courses per 

student and few students per course, this is not likely to happen. If it were 

suspected that this could cause a problem, then each of the (nonheader) cells 

could have pointers directly back to the student and class header. This would 

double the space requirement, but simplify and speed up the implementation.  

3.2.8. Cursor Implementation of Linked Lists 

Many languages, such as BASIC and FORTRAN, do not support pointers. If linked 
lists are required and pointers are not available, then an alternate 

implementation must be used. The alternate method we will describe is known as a 

cursor implementation.  

The two important items present in a pointer implementation of linked lists are  
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1. The data is stored in a collection of structures. Each structure contains the 

data and a pointer to the next structure.  

2. A new structure can be obtained from the system's global memory by a call to 

malloc and released by a call to free.  

Our cursor implementation must be able to simulate this. The logical way to 

satisfy condition 1 is to have a global array of structures. For any cell in the 

array, its array index can be used in place of an address. Figure 3.28 gives the 

type declarations for a cursor implementation of linked lists.  

We must now simulate condition 2 by allowing the equivalent of malloc and free 

for cells in the CURSOR_SPACE array. To do this, we will keep a list (the 

freelist) of cells that are not in any list. The list will use cell 0 as a 

header. The initial configuration is shown in Figure 3.29.  

A value of 0 for next is the equivalent of a pointer. The initialization of 

CURSOR_SPACE is a straightforward loop, which we leave as an exercise. To perform 

an malloc, the first element (after the header) is removed from the freelist.  

typedef unsigned int node_ptr; 

struct node 

{ 

element_type element; 

node_ptr next; 

}; 

typedef node_ptr LIST; 

typedef node_ptr position; 

struct node CURSOR_SPACE[ SPACE_SIZE ]; 

Figure 3.28 Declarations for cursor implementation of linked lists 

  Slot  Element  Next 

---------------------- 

    0              1 

    1              2 

    2              3 

    3              4 

    4              5 

    5              6 
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    6              7 

    7              8 

    8              9 

    9             10 

   10              0 

Figure 3.29 An initialized CURSOR_SPACE 

To perform a free, we place the cell at the front of the freelist. Figure 3.30 

shows the cursor implementation of malloc and free. Notice that if there is no 

space available, our routine does the correct thing by setting p = 0. This 

indicates that there are no more cells left, and also makes the second line of 

cursor_new a nonoperation (no-op).  

Given this, the cursor implementation of linked lists is straightforward. For 

consistency, we will implement our lists with a header node. As an example, in 

Figure 3.31, if the value of L is 5 and the value of M is 3, then L represents 

the list a, b, e, and M represents the list c, d, f.  

position 

cursor_alloc( void ) 

{ 

position p; 

p = CURSOR_SPACE[O].next; 

CURSOR_SPACE[0].next = CURSOR_SPACE[p].next; 

return p; 

} 

void 

cursor_free( position p) 

{ 

CURSOR_SPACE[p].next = CURSOR_SPACE[O].next; 

CURSOR_SPACE[O].next = p; 

} 

Figure 3.30 Routines: cursor-alloc and cursor-free 

  Slot  Element  Next 

---------------------- 
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    0      -       6 

    1      b       9 

    2      f       0 

    3    header    7 

    4      -       0 

    5    header   10 

    6      -       4 

    7      c       8 

    8      d       2 

    9      e       0 

   10      a       1 

Figure 3.31 Example of a cursor implementation of linked lists 

To write the functions for a cursor implementation of linked lists, we must pass 

and return the identical parameters as the pointer implementation. The routines 

are straightforward. Figure 3.32 implements a function to test whether a list is 

empty. Figure 3.33 implements the test of whether the current position is the 

last in a linked list.  

The function find in Figure 3.34 returns the position of x in list L.  

The code to implement deletion is shown in Figure 3.35. Again, the interface for 

the cursor implementation is identical to the pointer implementation. Finally, 

Figure 3.36 shows a cursor implementation of insert.  

The rest of the routines are similarly coded. The crucial point is that these 

routines follow the ADT specification. They take specific arguments and perform 
specific operations. The implementation is transparent to the user. The cursor 

implementation could be used instead of the linked list implementation, with 

virtually no change required in the rest of the code.  

int 

is_empty( LIST L )  /* using a header node */ 

{ 

return( CURSOR_SPACE[L].next == 0 

} 

Figure 3.32 Function to test whether a linked list is empty--cursor 

implementation 
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int 

is_last( position p, LIST L)  /* using a header node */ 

{ 

return( CURSOR_SPACE[p].next == 0 

} 

Figure 3.33 Function to test whether p is last in a linked list--cursor 

implementation 

position 

find( element_type x, LIST L) /* using a header node */ 

{ 

position p; 

/*1*/       p = CURSOR_SPACE[L].next; 

/*2*/       while( p && CURSOR_SPACE[p].element != x ) 

/*3*/             p = CURSOR_SPACE[p].next; 

/*4*/       return p; 

} 

Figure 3.34 Find routine--cursor implementation 

void 

delete( element_type x, LIST L ) 

{ 

position p, tmp_cell; 

p = find_previous( x, L ); 

if( !is_last( p, L) ) 

{ 

tmp_cell = CURSOR_SPACE[p].next; 

CURSOR_SPACE[p].next = CURSOR_SPACE[tmp_cell].next; 

cursor_free( tmp_cell ); 

} 

} 
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Figure 3.35 Deletion routine for linked lists--cursor implementation 

/* Insert (after legal position p); */ 

/* header implementation assumed */ 

void 

insert( element_type x, LIST L, position p ) 

{ 

position tmp_cell; 

/*1*/       tmp_cell = cursor_alloc( ) 

/*2*/       if( tmp_cell ==0 ) 

/*3*/       fatal_error("Out of space!!!"); 

else 

{ 

/*4*/            CURSOR_SPACE[tmp_cell].element = x; 

/*5*/            CURSOR_SPACE[tmp_cell].next = CURSOR_SPACE[p].next; 

/*6*/            CURSOR_SPACE[p].next = tmp_cell; 

} 

} 

Figure 3.36 Insertion routine for linked lists--cursor implementation 

The freelist represents an interesting data structure in its own right. The cell 

that is removed from the freelist is the one that was most recently placed there 

by virtue of free. Thus, the last cell placed on the freelist is the first cell 

taken off. The data structure that also has this property is known as a stack, 

and is the topic of the next section.  

3.3. The Stack ADT 

3.3.1. Stack Model 

A stack is a list with the restriction that inserts and deletes can be performed 

in only one position, namely the end of the list called the top. The fundamental 

operations on a stack are push, which is equivalent to an insert, and pop, which 

deletes the most recently inserted element. The most recently inserted element 

can be examined prior to performing a pop by use of the top routine. A pop or top

on an empty stack is generally considered an error in the stack ADT. On the 
other hand, running out of space when performing a push is an implementation 
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error but not an ADT error.  

Stacks are sometimes known as LIFO (last in, first out) lists. The model 
depicted in Figure 3.37 signifies only that pushes are input operations and pops 

and tops are output. The usual operations to make empty stacks and test for 

emptiness are part of the repertoire, but essentially all that you can do to a 

stack is push and pop.  

Figure 3.38 shows an abstract stack after several operations. The general model 

is that there is some element that is at the top of the stack, and it is the only 

element that is visible.  

  

Figure 3.37 Stack model: input to a stack is by push, output is by pop 

  

Figure 3.38 Stack model: only the top element is accessible 

3.3.2. Implementation of Stacks 

Of course, since a stack is a list, any list implementation will do. We will give 

two popular implementations. One uses pointers and the other uses an array, but, 

as we saw in the previous section, if we use good programming principles the 

calling routines do not need to know which method is being used.  

Linked List Implementation of Stacks 

The first implementation of a stack uses a singly linked list. We perform a push 

by inserting at the front of the list. We perform a pop by deleting the element 

at the front of the list. A top operation merely examines the element at the 

front of the list, returning its value. Sometimes the pop and top operations are 

combined into one. We could use calls to the linked list routines of the previous 
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section, but we will rewrite the stack routines from scratch for the sake of 

clarity.  

First, we give the definitions in Figure 3.39. We implement the stack using a 

header. Then Figure 3.40 shows that an empty stack is tested for in the same 

manner as an empty list.  

Creating an empty stack is also simple. We merely create a header node; make_null

sets the next pointer to NULL (see Fig. 3.41). The push is implemented as an 

insertion into the front of a linked list, where the front of the list serves as 

the top of the stack (see Fig. 3.42). The top is performed by examining the 

element in the first position of the list (see Fig. 3.43). Finally, we implement 

pop as a delete from the front of the list (see Fig. 3.44).  

It should be clear that all the operations take constant time, because nowhere in 

any of the routines is there even a reference to the size of the stack (except 

for emptiness), much less a loop that depends on this size. The drawback of this 

implementation is that the calls to malloc and free are expensive, especially in 

comparison to the pointer manipulation routines. Some of this can be avoided by 

using a second stack, which is initially empty. When a cell is to be disposed 

from the first stack, it is merely placed on the second stack. Then, when new 

cells are needed for the first stack, the second stack is checked first.  

Array Implementation of Stacks 

An alternative implementation avoids pointers and is probably the more popular 

solution. The only potential hazard with this strategy is that we need to declare 

an array size ahead of time. Generally this is not a problem, because in typical 

applications, even if there are quite a few stack operations, the actual number 

of elements in the stack at any time never gets too large. It is usually easy to 

declare the array to be large enough without wasting too much space. If this is 

not possible, then a safe course would be to use a linked list implementation.  

If we use an array implementation, the implementation is trivial. Associated with 

each stack is the top of stack, tos, which is -1 for an empty stack (this is how 

an empty stack is initialized). To push some element x onto the stack, we 

increment tos and then set STACK[tos] = x, where STACK is the array representing 

the actual stack. To pop, we set the return value to STACK[tos] and then 

decrement tos. Of course, since there are potentially several stacks, the STACK 

array and tos are part of one structure representing a stack. It is almost always 

a bad idea to use global variables and fixed names to represent this (or any) 

data structure, because in most real-life situations there will be more than one 

stack. When writing your actual code, you should attempt to follow the model as 

closely as possible, so that no part of your code, except for the stack routines, 

can attempt to access the array or top-of-stack variable implied by each stack. 

This is true for all ADT operations. Modern languages such as Ada and C++ can 
actually enforce this rule.  

typedef struct node 
*

node_ptr;

 

struct node 

{ 
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element_type element; 

node_ptr next; 

}; 

typedef node_ptr STACK; 

/
*

 Stack implementation will use a header. 
*

/

 

Figure 3.39 Type declaration for linked list implementation of the stack ADT 

int 

is_empty( STACK S ) 

{ 

return( S->next == NULL ); 

} 

Figure 3.40 Routine to test whether a stack is empty-linked list implementation 

STACK 

create_stack( void ) 

{ 

STACK S; 

S = (STACK) malloc( sizeof( struct node ) ); 

if( S == NULL ) 

fatal_error("Out of space!!!"); 

return S; 

} 

void 

make_null( STACK S ) 

{ 

if( S != NULL ) 

S->next = NULL; 

else 

error("Must use create_stack first"); 
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} 

Figure 3.41 Routine to create an empty stack-linked list implementation 

void 

push( element_type x, STACK S ) 

{ 

node_ptr tmp_cell; 

tmp_cell = (node_ptr) malloc( sizeof ( struct node ) ); 

if( tmp_cell == NULL ) 

fatal_error("Out of space!!!"); 

else 

{ 

tmp_cell->element = x; 

tmp_cell->next = S->next; 

S->next = tmp_cell; 

} 

} 

Figure 3.42 Routine to push onto a stack-linked list implementation 

element_type 

top( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

return S->next->element; 

} 

Figure 3.43 Routine to return top element in a stack--linked list implementation 

void 

pop( STACK S ) 

页码，26/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



{ 

node_ptr first_cell; 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

{ 

first_cell = S->next; 

S->next = S->next->next; 

free( first_cell ); 

} 

} 

Figure 3.44 Routine to pop from a stack--linked list implementation 

Notice that these operations are performed in not only constant time, but very 

fast constant time. On some machines, pushes and pops (of integers) can be 

written in one machine instruction, operating on a register with auto-increment 

and auto-decrement addressing. The fact that most modern machines have stack 

operations as part of the instruction set enforces the idea that the stack is 

probably the most fundamental data structure in computer science, after the 

array.  

One problem that affects the efficiency of implementing stacks is error testing. 

Our linked list implementation carefully checked for errors. As described above, 

a pop on an empty stack or a push on a full stack will overflow the array bounds 

and cause a crash. This is obviously undesirable, but if checks for these 

conditions were put in the array implementation, they would likely take as much 

time as the actual stack manipulation. For this reason, it has become a common 

practice to skimp on error checking in the stack routines, except where error 

handling is crucial (as in operating systems). Although you can probably get away 

with this in most cases by declaring the stack to be large enough not to overflow 

and ensuring that routines that use pop never attempt to pop an empty stack, this 

can lead to code that barely works at best, especially when programs get large 

and are written by more than one person or at more than one time. Because stack 

operations take such fast constant time, it is rare that a significant part of 

the running time of a program is spent in these routines. This means that it is 

generally not justifiable to omit error checks. You should always write the error 

checks; if they are redundant, you can always comment them out if they really 

cost too much time. Having said all this, we can now write routines to implement 

a general stack using arrays.  

A STACK is defined in Figure 3.45 as a pointer to a structure. The structure 

contains the top_of_stack and stack_size fields. Once the maximum size is known, 

the stack array can be dynamically allocated. Figure 3.46 creates a stack of a 
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given maximum size. Lines 3-5 allocate the stack structure, and lines 6-8 

allocate the stack array. Lines 9 and 10 initialize the top_of_stack and 

stack_size fields. The stack array does not need to be initialized. The stack is 

returned at line 11.  

The routine dispose_stack should be written to free the stack structure. This 

routine first frees the stack array and then the stack structure (See Figure 

3.47). Since create_stack requires an argument in the array implementation, but 

not in the linked list implementation, the routine that uses a stack will need to 

know which implementation is being used unless a dummy parameter is added for the 

later implementation. Unfortunately, efficiency and software idealism often 

create conflicts.  

struct stack_record 

{ 

unsigned int stack_size; 

int top_of_stack; 

element_type *stack_array; 

}; 

typedef struct stack_record *STACK; 

#define EMPTY_TOS (-1) /* Signifies an empty stack */ 

Figure 3.45 STACK definition--array implementaion 

STACK 

create_stack( unsigned int max_elements ) 

{ 

STACK S; 

/*1*/       if( max_elements < MIN_STACK_SIZE ) 

/*2*/            error("Stack size is too small"); 

/*3*/       S = (STACK) malloc( sizeof( struct stack_record ) ); 

/*4*/       if( S == NULL ) 

/*5*/            fatal_error("Out of space!!!"); 

/*6*/       S->stack_array = (element_type *) 

malloc( sizeof( element_type ) * max_elements ); 

/*7*/       if( S->stack_array == NULL ) 

/*8*/            fatal_error("Out of space!!!"); 
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/*9*/       S->top_of_stack = EMPTY_TOS; 

/*10*/      S->stack_size = max_elements; 

/*11*/      return( S ); 

} 

Figure 3.46 Stack creation--array implementaion 

void 

dispose_stack( STACK S ) 

{ 

if( S != NULL ) 

{ 

free( S->stack_array ); 

free( S ); 

} 

} 

Figure 3.47 Routine for freeing stack--array implementation 

We have assumed that all stacks deal with the same type of element. In many 

languages, if there are different types of stacks, then we need to rewrite a new 

version of the stack routines for each different type, giving each version a 

different name. A cleaner alternative is provided in C++, which allows one to 

write a set of generic stack routines and essentially pass the type as an 

argument.* C++ also allows stacks of several different types to retain the same 

procedure and function names (such as push and pop): The compiler decides which 

routines are implied by checking the type of the calling routine.  

*This is somewhat of an oversimplification.  

Having said all this, we will now rewrite the four stack routines. In true ADT 
spirit, we will make the function and procedure heading look identical to the 

linked list implementation. The routines themselves are very simple and follow 

the written description exactly (see Figs. 3.48 to 3.52).  

Pop is occasionally written as a function that returns the popped element (and 

alters the stack). Although current thinking suggests that functions should not 

change their input variables, Figure 3.53 illustrates that this is the most 

convenient method in C.  

int 

is_empty( STACK S ) 

页码，29/47Structures, Algorithm Analysis: CHAPTER 3: LISTS, STACKS, AND QUEUES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



{ 

return( S->top_of_stack == EMPTY_TOS ); 

} 

Figure 3.48 Routine to test whether a stack is empty--array implementation 

void 

make_null( STACK S ) 

{ 

S->top_of_stack = EMPTY_TOS; 

} 

Figure 3.49 Routine to create an empty stack--array implementation 

void 

push( element_type x, STACK S ) 

{ 

if( is_full( S ) ) 

error("Full stack"); 

else 

S->stack_array[ ++S->top_of_stack ] = x; 

} 

Figure 3.50 Routine to push onto a stack--array implementation 

element_type 

top( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

return S->stack_array[ S->top_of_stack ]; 

} 

Figure 3.51 Routine to return top of stack--array implementation 
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void 

pop( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

S->top_of_stack--; 

} 

Figure 3.52 Routine to pop from a stack--array implementation 

element_type 

pop( STACK S ) 

{ 

if( is_empty( S ) ) 

error("Empty stack"); 

else 

return S->stack_array[ S->top_of_stack-- ]; 

} 

Figure 3.53 Routine to give top element and pop a stack--array implementation 

3.3.3. Applications 

It should come as no surprise that if we restrict the operations allowed on a 

list, those operations can be performed very quickly. The big surprise, however, 

is that the small number of operations left are so powerful and important. We 

give three of the many applications of stacks. The third application gives a deep 

insight into how programs are organized.  

Balancing Symbols 

Compilers check your programs for syntax errors, but frequently a lack of one 

symbol (such as a missing brace or comment starter) will cause the compiler to 

spill out a hundred lines of diagnostics without identifying the real error.  

A useful tool in this situation is a program that checks whether everything is 

balanced. Thus, every right brace, bracket, and parenthesis must correspond to 

their left counterparts. The sequence [()] is legal, but [(]) is wrong. 

Obviously, it is not worthwhile writing a huge program for this, but it turns out 
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that it is easy to check these things. For simplicity, we will just check for 

balancing of parentheses, brackets, and braces and ignore any other character 

that appears.  

The simple algorithm uses a stack and is as follows:  

Make an empty stack. Read characters until end of file. If the character is an 

open anything, push it onto the stack. If it is a close anything, then if the 

stack is empty report an error. Otherwise, pop the stack. If the symbol popped is 

not the corresponding opening symbol, then report an error. At end of file, if 

the stack is not empty report an error.  

You should be able to convince yourself that this algorithm works. It is clearly 

linear and actually makes only one pass through the input. It is thus on-line and 

quite fast. Extra work can be done to attempt to decide what to do when an error 

is reported--such as identifying the likely cause.  

Postfix Expressions 

Suppose we have a pocket calculator and would like to compute the cost of a 

shopping trip. To do so, we add a list of numbers and multiply the result by 

1.06; this computes the purchase price of some items with local sales tax added. 

If the items are 4.99, 5.99, and 6.99, then a natural way to enter this would be 

the sequence  

4.99 + 5.99 + 6.99 
*

 1.06 =

 

Depending on the calculator, this produces either the intended answer, 19.05, or 

the scientific answer, 18.39. Most simple four-function calculators will give the 

first answer, but better calculators know that multiplication has higher 

precedence than addition.  

On the other hand, some items are taxable and some are not, so if only the first 

and last items were actually taxable, then the sequence  

4.99 
*

 1.06 + 5.99 + 6.99 
*

 1.06 =

 

would give the correct answer (18.69) on a scientific calculator and the wrong 

answer (19.37) on a simple calculator. A scientific calculator generally comes 

with parentheses, so we can always get the right answer by parenthesizing, but 

with a simple calculator we need to remember intermediate results.  

A typical evaluation sequence for this example might be to multiply 4.99 and 

1.06, saving this answer as a

1

. We then add 5.99 and a

1

, saving the result in a

1

. 

We multiply 6.99 and 1.06, saving the answer in a

2

, and finish by adding a

l

 and 

a

2

, leaving the final answer in a

l

. We can write this sequence of operations as 

follows:  

4.99 1.06 
*

 5.99 + 6.99 1.06 
*

 +

 

This notation is known as postfix or reverse Polish notation and is evaluated 

exactly as we have described above. The easiest way to do this is to use a stack. 
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When a number is seen, it is pushed onto the stack; when an operator is seen, the 

operator is applied to the two numbers (symbols) that are popped from the stack 

and the result is pushed onto the stack. For instance, the postfix expression  

6 5 2 3 + 8 
* 

+ 3 + 
*

 

is evaluated as follows: The first four symbols are placed on the stack. The resulting stack is 

 

 

Next a '+' is read, so 3 and 2 are popped from the stack and their sum, 5, is pushed. 

 

 

 

Next 8 is pushed. 

 

 

 

Now a '

*'

 is seen, so 8 and 5 are popped as 8 

*

 5 = 40 is pushed. 

 

 

 

Next a '+' is seen, so 40 and 5 are popped and 40 + 5 = 45 is pushed. 

 

 

 

Now, 3 is pushed. 
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Next '+' pops 3 and 45 and pushes 45 + 3 = 48. 

 

 

 

Finally, a '

*'

 is seen and 48 and 6 are popped, the result 6 

*

 48 = 288 is pushed. 

 

 

 

The time to evaluate a postfix expression is O(n), because processing each element in the input 

consists of stack operations and thus takes constant time. The algorithm to do so is very simple. 

Notice that when an expression is given in postfix notation, there is no need to know any 

precedence rules; this is an obvious advantage.  

Infix to Postfix Conversion

 

Not only can a stack be used to evaluate a postfix expression, but we can also use a stack to 

convert an expression in standard form (otherwise known as infix) into postfix. We will 

concentrate on a small version of the general problem by allowing only the operators +, 

*

, and 

(, ), and insisting on the usual precedence rules. We will further assume that the expression is 

legal. Suppose we want to convert the infix expression  

a + b 

* 

c + ( d 

* 

e + f ) 

* 

g

 

into postfix. A correct answer is a b c 

*

 + d e 

*

 f + g 

*

 +. 

 

When an operand is read, it is immediately placed onto the output. Operators are not immediately 

output, so they must be saved somewhere. The correct thing to do is to place operators that have 

been seen, but not placed on the output, onto the stack. We will also stack left parentheses when 

they are encountered. We start with an initially empty stack.  

If we see a right parenthesis, then we pop the stack, writing symbols until we encounter a 

(corresponding) left parenthesis, which is popped but not output.  

If we see any other symbol ('+','

*

', '(' ), then we pop entries from the stack until we find an 

entry of lower priority. One exception is that we never remove a '(' from the stack except when 

processing a ')'. For the purposes of this operation, '+' has lowest priority and '(' highest. 

When the popping is done, we push the operand onto the stack.  
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Finally, if we read the end of input, we pop the stack until it is empty, writing symbols onto 

the output.  

To see how this algorithm performs, we will convert the infix expression above into its postfix 

form. First, the symbol a is read, so it is passed through to the output. Then '+' is read and 

pushed onto the stack. Next b is read and passed through to the output. The state of affairs at 

this juncture is as follows:  

 

 

Next a '

*

' is read. The top entry on the operator stack has lower precedence than '

*

', so nothing 

is output and '

*

' is put on the stack. Next, c is read and output. Thus far, we have  

 

 

The next symbol is a '+'. Checking the stack, we find that we will pop a '

*

' and place it on the 

output, pop the other '+', which is not of lower but equal priority, on the stack, and then push 

the '+'.  

 

 

The next symbol read is an '(', which, being of highest precedence, is placed on the stack. Then 

d is read and output.  

 

 

We continue by reading a '

*

'. Since open parentheses do not get removed except when a closed 

parenthesis is being processed, there is no output. Next, e is read and output.  
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The next symbol read is a '+'. We pop and output '

*

' and then push '+'. Then we read and output 

. 

 

 

 

Now we read a ')', so the stack is emptied back to the '('. We output a '+'. 

 

 

 

We read a '

*

' next; it is pushed onto the stack. Then g is read and output. 

 

 

 

The input is now empty, so we pop and output symbols from the stack until it is empty. 

 

 

 

As before, this conversion requires only O(n) time and works in one pass through the input. We 

can add subtraction and division to this repertoire by assigning subtraction and addition equal 

priority and multiplication and division equal priority. A subtle point is that the expression a 

- b - c will be converted to ab - c- and not abc - -. Our algorithm does the right thing, because 

these operators associate from left to right. This is not necessarily the case in general, since 

exponentiation associates right to left: 2

23
 = 2

8

 = 256 not 4

3

 = 64. We leave as an exercise the 

problem of adding exponentiation to the repertoire of assignments.  

Function Calls

 

The algorithm to check balanced symbols suggests a way to implement function calls. The problem 

here is that when a call is made to a new function, all the variables local to the calling 

routine need to be saved by the system, since otherwise the new function will overwrite the 

calling routine's variables. Furthermore, the current location in the routine must be saved so 

that the new function knows where to go after it is done. The variables have generally been 

assigned by the compiler to machine registers, and there are certain to be conflicts (usually all 

procedures get some variables assigned to register #1), especially if recursion is involved. The 

reason that this problem is similar to balancing symbols is that a function call and function 

return are essentially the same as an open parenthesis and closed parenthesis, so the same ideas 
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should work.  

When there is a function call, all the important information that needs to be saved, such as 

register values (corresponding to variable names) and the return address (which can be obtained 

from the program counter, which is typically in a register), is saved "on a piece of paper" in an 

abstract way and put at the top of a pile. Then the control is transferred to the new function, 

which is free to replace the registers with its values. If it makes other function calls, it 

follows the same procedure. When the function wants to return, it looks at the "paper" at the top 

of the pile and restores all the registers. It then makes the return jump.  

Clearly, all of this work can be done using a stack, and that is exactly what happens in 

virtually every programming language that implements recursion. The information saved is called 

either an activation record or stack frame. The stack in a real computer frequently grows from 

the high end of your memory partition downwards, and on many systems there is no checking for 

overflow. There is always the possibility that you will run out of stack space by having too many 

simultaneously active functions. Needless to say, running out of stack space is always a fatal 

error.  

In languages and systems that do not check for stack overflow, your program will crash without an 

explicit explanation. On these systems, strange things may happen when your stack gets too big, 

because your stack will run into part of your program. It could be the main program, or it could 

be part of your data, especially if you have a big array. If it runs into your program, your 

program will be corrupted; you will have nonsense instructions and will crash as soon as they are 

executed. If the stack runs into your data, what is likely to happen is that when you write 

something into your data, it will destroy stack information -- probably the return address -- and 

your program will attempt to return to some weird address and crash.  

In normal events, you should not run out of stack space; doing so is usually an indication of 

runaway recursion (forgetting a base case). On the other hand, some perfectly legal and seemingly 

innocuous program can cause you to run out of stack space. The routine in Figure 3.54, which 

prints out a linked list, is perfectly legal and actually correct. It properly handles the base 

case of an empty list, and the recursion is fine. This program can be proven correct. 

Unfortunately, if the list contains 20,000 elements, there will be a stack of 20,000 activation 

records representing the nested calls of line 3. Activation records are typically large because 

of all the information they contain, so this program is likely to run out of stack space. (If 

20,000 elements are not enough to make the program crash, replace the number with a larger one.) 

This program is an example of an extremely bad use of recursion known as tail recursion. Tail 

recursion refers to a recursive call at the last line. Tail recursion can be mechanically 

eliminated by changing the recursive call to a goto preceded by one assignment per function 

argument. This simulates the recursive call because nothing needs to be saved -- after the 

recursive call finishes, there is really no need to know the saved values. Because of this, we 

can just go to the top of the function with the values that would have been used in a recursive 

call. The program in Figure 3.55 shows the improved version. Keep in mind that you should use the 

more natural while loop construction. The goto is used here to show how a compiler might 

automatically remove the recursion.  

Removal of tail recursion is so simple that some compilers do it automatically. Even so, it is 

best not to find out that yours does not.  

void             /* Not using a header */

 

print_list( LIST L )

 

{

 

/*1*/       if( L != NULL )

 

{

 

/*2*/            print_element( L->element );
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/*3*/            print_list( L->next ); 

}

 

}

 

Figure 3.54 A bad use of recursion: printing a linked list

 

void

 

print_list( LIST L ) /* No header */

 

{

 

top:

 

if( L != NULL )

 

{

 

print_element( L->element );

 

L = L->next;

 

goto top;

 

}

 

}

 

Figure 3.55 Printing a list without recursion; a compiler might do this (you should not)

 

Recursion can always be completely removed (obviously, the compiler does so in converting to 

assembly language), but doing so can be quite tedious. The general strategy requires using a 

stack and is obviously worthwhile only if you can manage to put only the bare minimum on the 

stack. We will not dwell on this further, except to point out that although nonrecursive programs 

are certainly generally faster than recursive programs, the speed advantage rarely justifies the 

lack of clarity that results from removing the recursion.  

3.4. The Queue ADT

 

Like stacks, queues are lists. With a queue, however, insertion is done at one end, whereas 

deletion is performed at the other end.  

3.4.1. Queue Model

 

The basic operations on a queue are enqueue, which inserts an element at the end of the list 

(called the rear), and dequeue, which deletes (and returns) the element at the start of the list 

(known as the front). Figure 3.56 shows the abstract model of a queue.  
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Figure 3.56 Model of a queue 

3.4.2. Array Implementation of Queues

 

As with stacks, any list implementation is legal for queues. Like stacks, both the linked list 

and array implementations give fast O(1) running times for every operation. The linked list 

implementation is straightforward and left as an exercise. We will now discuss an array 

implementation of queues.  

For each queue data structure, we keep an array, QUEUE[], and the positions q_front and q_rear, 

which represent the ends of the queue. We also keep track of the number of elements that are 

actually in the queue, q_size. All this information is part of one structure, and as usual, 

except for the queue routines themselves, no routine should ever access these directly. The 

following figure shows a queue in some intermediate state. By the way, the cells that are blanks 

have undefined values in them. In particular, the first two cells have elements that used to be 

in the queue.  

 

 

The operations should be clear. To enqueue an element x, we increment q_size and q_rear, then set 

QUEUE[q_rear] = x. To dequeue an element, we set the return value to QUEUE[q_front], decrement 

q_size, and then increment q_front. Other strategies are possible (this is discussed later). We 

will comment on checking for errors presently.  

There is one potential problem with this implementation. After 10 enqueues, the queue appears to 

be full, since q_front is now 10, and the next enqueue would be in a nonexistent position. 

However, there might only be a few elements in the queue, because several elements may have 

already been dequeued. Queues, like stacks, frequently stay small even in the presence of a lot 

of operations.  

The simple solution is that whenever q_front or q_rear gets to the end of the array, it is 

wrapped around to the beginning. The following figure shows the queue during some operations. 

This is known as a circular array implementation.  
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The extra code required to implement the wraparound is minimal (although it probably doubles the 

running time). If incrementing either q_rear or q_front causes it to go past the array, the value 

is reset to the first position in the array.  

There are two warnings about the circular array implementation of queues. First, it is important 

to check the queue for emptiness, because a dequeue when the queue is empty will return an 

undefined value, silently.  

Secondly, some programmers use different ways of representing the front and rear of a queue. For 

instance, some do not use an entry to keep track of the size, because they rely on the base case 

that when the queue is empty, q_rear = q_front - 1. The size is computed implicitly by comparing 

q_rear and q_front. This is a very tricky way to go, because there are some special cases, so be 

very careful if you need to modify code written this way. If the size is not part of the 

structure, then if the array size is A_SIZE, the queue is full when there are A_SIZE -1 elements, 

since only A_SIZE different sizes can be differentiated, and one of these is 0. Pick any style 

you like and make sure that all your routines are consistent. Since there are a few options for 

implementation, it is probably worth a comment or two in the code, if you don't use the size 

field.  
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In applications where you are sure that the number of enqueues is not larger than the size of the 

queue, obviously the wraparound is not necessary. As with stacks, dequeues are rarely performed 

unless the calling routines are certain that the queue is not empty. Thus error calls are 

frequently skipped for this operation, except in critical code. This is generally not 

justifiable, because the time savings that you are likely to achieve are too minimal.  

We finish this section by writing some of the queue routines. We leave the others as an exercise 

to the reader. First, we give the type definitions in 

Figure 3.57. We add a maximum size field, 

as was done for the array implementation of the stack; queue_create and queue_dispose routines 

also need to be provided. We also provide routines to test whether a queue is empty and to make 

an empty queue (Figs. 3.58 and 3.59). The reader can write the function is_full, which performs 

the test implied by its name. Notice that q_rear is preinitialized to 1 before q_front. The final 

operation we will write is the enqueue routine. Following the exact description above, we arrive 

at the implementation in Figure 3.60.  

3.4.3. Applications of Queues

 

There are several algorithms that use queues to give efficient running times. Several of these 

are found in graph theory, and we will discuss them later in 

Chapter 9. For now, we will give 

some simple examples of queue usage.  

struct queue_record

 

{

 

unsigned int q_max_size;  /* Maximum # of elements */

 

/* until Q is full */

 

unsigned int q_front;

 

unsigned int q_rear;

 

unsigned int q_size;      /* Current # of elements in Q */

 

element_type *q_array;

 

};

 

typedef struct queue_record * QUEUE;

 

Figure 3.57 Type declarations for queue--array implementation

 

int

 

is_empty( QUEUE Q )

 

{

 

return( Q->q_size == 0 );

 

}

 

Figure 3.58 Routine to test whether a queue is empty-array implementation

 

void

 

make_null ( QUEUE Q )

 

{
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Q->q_size = 0; 

Q->q_front = 1;

 

Q->q_rear = 0;

 

}

 

Figure 3.59 Routine to make an empty queue-array implementation

 

unsigned int

 

succ( unsigned int value, QUEUE Q )

 

{

 

if( ++value == Q->q_max_size )

 

value = 0;

 

return value;

 

}

 

void

 

enqueue( element_type x, QUEUE Q )

 

{

 

if( is_full( Q ) )

 

error("Full queue");

 

else

 

{

 

Q->q_size++;

 

Q->q_rear = succ( Q->q_rear, Q );

 

Q->q_array[ Q->q_rear ] = x;

 

}

 

}

 

Figure 3.60 Routines to enqueue-array implementation

 

When jobs are submitted to a printer, they are arranged in order of arrival. Thus, essentially, 

jobs sent to a line printer are placed on a queue.*  

*We say essentially a queue, because jobs can be killed. This amounts to a deletion from the 

middle of the queue, which is a violation of the strict definition.  

Virtually every real-life line is (supposed to be) a queue. For instance, lines at ticket 

counters are queues, because service is first-come first-served.  

Another example concerns computer networks. There are many network setups of personal computers 

in which the disk is attached to one machine, known as the file server. Users on other machines 
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are given access to files on a first-come first-served basis, so the data structure is a queue.  

Further examples include the following: 

 

 Calls to large companies are generally placed on a queue when all operators are busy. 

 

 In large universities, where resources are limited, students must sign a waiting list if all 

terminals are occupied. The student who has been at a terminal the longest is forced off first, 

and the student who has been waiting the longest is the next user to be allowed on.  

A whole branch of mathematics, known as queueing theory, deals with computing, probabilistically, 

how long users expect to wait on a line, how long the line gets, and other such questions. The 

answer depends on how frequently users arrive to the line and how long it takes to process a user 

once the user is served. Both of these parameters are given as probability distribution 

functions. In simple cases, an answer can be computed analytically. An example of an easy case 

would be a phone line with one operator. If the operator is busy, callers are placed on a waiting 

line (up to some maximum limit). This problem is important for businesses, because studies have 

shown that people are quick to hang up the phone.  

If there are k operators, then this problem is much more difficult to solve. Problems that are 

difficult to solve analytically are often solved by a simulation. In our case, we would need to 

use a queue to perform the simulation. If k is large, we also need other data structures to do 

this efficiently. We shall see how to do this simulation in Chapter 6. We could then run the 

simulation for several values of k and choose the minimum k that gives a reasonable waiting time. 

Additional uses for queues abound, and as with stacks, it is staggering that such a simple data 

structure can be so important.  

Summary

 

This chapter describes the concept of ADTs and illustrates the concept with three of the most 
common abstract data types. The primary objective is to separate the implementation of the 

abstract data types from their function. The program must know what the operations do, but it is 

actually better off not knowing how it is done.  

Lists, stacks, and queues are perhaps the three fundamental data structures in all of computer 

science, and their use is documented through a host of examples. In particular, we saw how stacks 

are used to keep track of procedure and function calls and how recursion is actually implemented. 

This is important to understand, not just because it makes procedural languages possible, but 

because knowing how recursion is implemented removes a good deal of the mystery that surrounds 

its use. Although recursion is very powerful, it is not an entirely free operation; misuse and 

abuse of recursion can result in programs crashing.  

Exercises

 

3.1 Write a program to print out the elements of a singly linked list. 

 

3.2 You are given a linked list, L, and another linked list, P, containing integers, sorted in 

ascending order. The operation print_lots(L,P) will print the elements in L that are in positions 

specified by P. For instance, if P = 1, 3, 4, 6, the first, third, fourth, and sixth elements in 

L are printed. Write the routine print_lots(L,P). You should use only the basic list operations. 

What is the running time of your routine?  

3.3 Swap two adjacent elements by adjusting only the pointers (and not the data) using 
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a. singly linked lists,  

b. doubly linked lists. 

 

3.4 Given two sorted lists, L

1

 and L

2

, write a procedure to compute L

1

  L

2

 using only the 

basic list operations.  

3.5 Given two sorted lists, L

1

 and L

2

, write a procedure to compute L

1

  L

2

 using only the 

basic list operations.  

3.6 Write a function to add two polynomials. Do not destroy the input. Use a linked list 

implementation. If the polynomials have m and n terms respectively, what is the time complexity 

of your program?  

3.7 Write a function to multiply two polynomials, using a linked list implementation. You must 

make sure that the output polynomial is sorted by exponent and has at most one term of any power.

a. Give an algorithm to solve this problem in O(m

2

n

2

) time. 

 

*b. Write a program to perform the multiplication in O(m

2

n) time, where m is the number of terms 

in the polynomial of fewer terms.  

*c. Write a program to perform the multiplication in O(mn log(mn)) time. 

 

d. Which time bound above is the best? 

 

3.8 Write a program that takes a polynomial, (x), and computes ( (x))

p

. What is the 

complexity of your program? Propose at least one alternative solution that could be competitive 

for some plausible choices of (x) and p. 

 

3.9 Write an arbitrary-precision integer arithmetic package. You should use a strategy similar to 

polynomial arithmetic. Compute the distribution of the digits 0 to 9 in 2

4000

. 

 

3.10 The Josephus problem is the following mass suicide "game": n people, numbered 1 to n, are 

sitting in a circle. Starting at person 1, a handgun is passed. After m passes, the person 

holding the gun commits suicide, the body is removed, the circle closes ranks, and the game 

continues with the person who was sitting after the corpse picking up the gun. The last survivor 

is tried for n - 1 counts of manslaughter. Thus, if m = 0 and n = 5, players are killed in order 

and player 5 stands trial. If m = 1 and n = 5, the order of death is 2, 4, 1, 5.  

a. Write a program to solve the Josephus problem for general values of m and n. Try to make your 

program as efficient as possible. Make sure you dispose of cells.  

b. What is the running time of your program? 

 

c. If m = 1, what is the running time of your program? How is the actual speed affected by the 

free routine for large values of n (n > 10000)?  

3.11 Write a program to find a particular element in a singly linked list. Do this both 

recursively and nonrecursively, and compare the running times. How big does the list have to be 
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before the recursive version crashes?  

3.12 a. Write a nonrecursive procedure to reverse a singly linked list in O(n) time. 

 

*b. Write a procedure to reverse a singly linked list in O(n) time using constant extra space. 

 

3.13 You have to sort an array of student records by social security number. Write a program to 

do this, using radix sort with 1000 buckets and three passes.  

3.14 Write a program to read a graph into adjacency lists using 

 

a. linked lists 

 

b. cursors 

 

3.15 a. Write an array implementation of self-adjusting lists. A self-adjusting list is like a 

regular list, except that all insertions are performed at the front, and when an element is 

accessed by a find, it is moved to the front of the list without changing the relative order of 

the other items.  

b. Write a linked list implementation of self-adjusting lists. 

 

*c. Suppose each element has a fixed probability, p

i

, of being accessed. Show that the elements 

with highest access probability are expected to be close to the front.  

3.16 Suppose we have an array-based list a[0..n -1] and we want to delete all duplicates. 

last_position is initially n - 1, but gets smaller as elements are deleted. Consider the 

pseudocode program fragment in Figure 3.61. The procedure DELETE deletes the element in position 

j and collapses the list.  

a. Explain how this procedure works. 

 

b. Rewrite this procedure using general list operations. 

 

/*1*/  for( i=0; i<last_position; i++ )

 

{

 

/*2*/       j = i + 1;

 

/*3*/       while( j<last_position )

 

/*4*/            if( a[i] == a[j]

 

/*5*/                 DELETE(j);

 

                 else

 

/*6*/                 j++;

 

}

 

Figure 3.61 Routine to remove duplicates from a lists--array implementation

 

*c. Using a standard array implementation, what is the running time of this procedure? 
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d. What is the running time using a linked list implementation?  

*e. Give an algorithm to solve this problem in O(n log n) time. 

 

**f. Prove that any algorithm to solve this problem requires (n log n) comparisons if only 

comparisons are used. Hint: Look to 

Chapter 7. 

 

*g. Prove that if we allow operations besides comparisons, and the keys are real numbers, then we 

can solve the problem without using comparisons between elements.  

3.17 An alternative to the deletion strategy we have given is to use lazy deletion. To delete an 

element, we merely mark it deleted (using an extra bit field). The number of deleted and 

nondeleted elements in the list is kept as part of the data structure. If there are as many 

deleted elements as nondeleted elements, we traverse the entire list, performing the standard 

deletion algorithm on all marked nodes.  

a. List the advantages and disadvantages of lazy deletion. 

 

b. Write routines to implement the standard linked list operations using lazy deletion. 

 

3.18 Write a program to check for balancing symbols in the following languages: 

 

a. Pascal (begin/end, ( ), [ ], { }). 

 

b. C (/* */, ( ), [ ], { }). 

 

*c. Explain how to print out an error message that is likely to reflect the probable cause. 

 

3.19 Write a program to evaluate a postfix expression. 

 

3.20 a. Write a program to convert an infix expression which includes '(', ')', '+', '-', '*' and 

'/' to postfix.  

b. Add the exponentiation operator to your repertoire. 

 

c. Write a program to convert a postfix expression to infix. 

 

3.21 Write routines to implement two stacks using only one array. Your stack routines should not 

declare an overflow unless every slot in the array is used.  

3.22 *a. Propose a data structure that supports the stack push and pop operations and a third 

operation find_min, which returns the smallest element in the data structure, all in O(1) worst 

case time.  

*b. Prove that if we add the fourth operation delete_min which finds and removes the smallest 

element, then at least one of the operations must take (logn) time. (This requires reading 

Chapter 7.)  

3.23 *Show how to implement three stacks in one array. 

 

3.24 If the recursive routine in Section 2.4 used to compute Fibonacci numbers is run for n = 50, 

is stack space likely to run out? Why or why not?  
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3.25 Write the routines to implement queues using 

 

a. linked lists 

 

b. arrays 

 

3.26 A deque is a data structure consisting of a list of items, on which the following operations 

are possible:  

push(x,d): Insert item x on the front end of deque d. 

 

pop(d): Remove the front item from deque d and return it. 

 

inject(x,d): Insert item x on the rear end of deque d. 

 

eject(d): Remove the rear item from deque d and return it. 

 

Write routines to support the deque that take O(1) time per operation. 

 

Go to 

Chapter 4 Return to Table of Contents 
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